
1 Exponential Functions and e1

To begin, review Exponential Functions in the pdf linked to from the website. START on2

p. 417. STOP on line 6 of p. 418 at the sentence ending “and hence invertible.” START3

at Definition 6 on p. 418. STOP just before Example 6.1.1 on p. 420. This will give you a4

basic review of exponential functions.5

As mentioned in the review, there is a particular choice of base b which we use a lot in6

calculus – the base e. So let’s look at why this particular number is important. You want to7

think of e like π – it is an irrational number which cannot be represented by a fraction. The8

more you work problems with e, the more you’ll get used to it.9

You’ll need to go to this desmos page on Exponential Derivatives, since the notes here will10

be referring to the graphs there. You’ll see a graph (in red) of y = bx, with a slider you can11

move to change the base b. Then you also see a graph (in blue) of f ′(x).12

Right now, we don’t have a formula for f ′(x). Remember, to use the Power Rule, the x has13

to be in the base, but with y = bx, the x is in the exponent. Moreover, bx cannot be written14

as product or quotient, so we can’t apply these rules, and we can’t use the Chain Rule either.15

But you should notice one thing. The derivative of an exponential function looks like another16

exponential function. Why should this be?17

To help you see this, please go to the desmos page Exponential Tangents. Here, you see the18

graph of y = 2x. As you move the slider for a, you’ll see the tangent line at a along with19

its slope. (Don’t worry about the complicated looking second formula; we won’t be needing20

this.)21

So let’s take a look at these graphs. As we look at the graph of y = 2x as we go from22

−5 to 5, you notice that it starts off very small, gradually increases, and then begins to23

increasing more rapidly the further right you get. But this is the same behavior we notice24

with the slopes of the tangent lines. The slopes (in blue) start off small, gradually increase,25

but increase even faster the further we go to the right.26

Now a graphical observation is not a mathematical proof that the derivative of an exponential27

function is another exponential, but it is true. These desmos graphs are just meant to show28

why it makes graphical sense. We will not need a formal proof.29

So if the derivative of f(x) = 2x is another exponential function, just what exponential30

function is it? We won’t completely answer this question right now, but at least we’ll get a31

good start on it.32

Now navigate back to Exponential Derivatives. Remember, the red graph is y = bx, and the33

derivative is the blue graph. Now starting at the left of the slider for b, you will notice that34

the derivative graph is below the exponential graph. As you move the slider to the right,35
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you should see that the derivative graph moves up closer to the exponential graph. As b36

approaches about 2.7, you should notice that the derivative graph crosses over and is now37

above the exponential graph.38

What is happening around b = 2.7? There is exactly one value of b where the derivative graph39

is exactly on top of the exponential graph. For lesser values, the derivative graph is below40

the exponential graph, and for greater values, the derivative graph is above the exponential41

graph. The value of b where the two graphs are the same is called e, where e ≈ 2.71828. The42

number e is an irrational number; there is no simple formula for it, just like π.43

In terms of calculus, we can summarize these observations as follows. Note the important44

double box!45

d

dx
ex = ex

46

This means that the derivative graph of ex is exactly the same graph as ex. Don’t forget this47

formula! Remember, we need this formula because we can’t use the Power Rule – the x is48

not in the base, it’s in the exponent.49

Example 150

Let h(x) = 4e0.5x. Find h′(x).51

Our formula applies only if the exponent of e is just x. Since the exponent is different here,
we need the Chain Rule. We will use

f(x) = ex, f ′(x) = ex,

g(x) = 0.5x, g′(x) = 0.5

h(x) = 4e0.5x

h′(x) = 4f ′(g(x))g′(x)

= 4eg(x)(0.5)

= 2e0.5x
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Example 252

One application of exponential functions is bacterial growth. This is a good model for the53

initial growth spurt when a culture of bacteria is started in a Petri dish. After a while,54

though, the Petri dish begins to fill up and the growth rate slows down. To model the55

slowing part down as well, you’ll need to wait until Calculus II.56

You’ll need to get used to using the variable t for exponential growth, since t is the variable
most used for time. So suppose a population of bacteria is modeled by

P (t) = 5000e0.01t,

where P is the population at time t, which is given in hours. Let’s look at a few questions.57

1. What is the initial population?58

2. What is the population after 10 hours?59

3. At what rate is the population increasing at 10 hours?60

Solutions:61

1. The term initial population always refers to the time t = 0. P (0) = 5000e0.01(0) = 5000,62

so the initial population is 5000 bacteria.63

2. After 10 hours, the population is P (10) = 5000e0.01(10) ≈ 5525.85. (You should have a64

key on your calculator which calculates ex.) Since you can’t have a fractional number65

of bacteria, we usually round up and say the population is 5526.66

3. Since we’re asking for a rate, we need the derivative – just like the velocity is the rate
of change of the displacement. We will use the Chain Rule again. We will use the
variable t for time.

f(t) = et, f ′(t) = et,

g(t) = 0.01t, g′(t) = 0.01.

P (t) = 5000e0.01t

P ′(t) = 5000f ′(g(t))g′(t)

= 5000eg(t)(0.01)

= 50e0.01t

Now use your calculator to see that P ′(10) ≈ 55.2585. So the population increase at67

10 hours is approximately 56 bacteria per hour.68
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Example 3 When calculating derivatives involving ex, you will almost always need the69

Chain Rule. Suppose h(x) = ex
2
. Find h′(x). (Note: ex

2
means e(x

2), so you cannot simplify70

using rules of exponents first. This is just something you have to know; just like the square71

root sign means a
1

2
power.)72

To do this, we let
f(x) = ex, f ′(x) = ex,

g(x) = x2, g′(x) = 2x.

Then

h(x) = ex
2

h′(x) = f ′(g(x))g′(x)

= eg(x)(2x)

= 2xex
2

Homework73

1. Suppose f(x) = 2xex. Find f ′(x).74

2. Let f(x) =
ex

ex + 1
.75

3. Let h(x) = ex sin(x). Find h′(x).76

4. Let h(x) = esin(x)+cos(x). Find h′(x).77

5. Suppose g(x) = e
√
x.78

6. Suppose a population of bacteria is modeled by

P (t) = 4000e0.02t,

where P is the population at time t, which is given in hours.79

(a) What is the initial population?80

(b) What is the population after 5 hours?81

(c) At what rate is the population increasing at 5 hours?82
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Solutions:83

1. We need the Product Rule here. We’ll use

f(x) = 2x, f ′(x) = 2,

g(x) = ex, g′(x) = ex.

Remember the f(x) in the Product Rule is not the same as the original f(x). Then

d

dx
2xex = f(x)g′(x) + g(x)f ′(x)

= 2xex + ex(2)

= 2xex + 2ex

= 2ex(x+ 1).

It is not necessary to factor out the 2ex, but that is likely the answer a book or software84

would give you.85

2. We need the Quotient Rule here. We’ll use

f(x) = ex, f ′(x) = ex,

g(x) = ex + 1, g′(x) = ex.

Also, don’t forget that
ex · ex = ex+x = e2x.

Then

d

dx

ex

ex + 1
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
(ex + 1)ex − ex · ex

(ex + 1)2

=
e2x + ex − e2x

(ex + 1)2

=
ex

(ex + 1)2

3. We use the Product Rule here.

f(x) = ex, f ′(x) = ex,

g(x) = sin(x), g′(x) = cos(x).

h′(x) = f(x)g′(x) + g(x)f ′(x)

= ex(cos(x)) + sin(x)(ex)

= ex(cos(x) + sin(x))
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4. We use the Chain Rule here.86

f(x) = ex, f ′(x) = ex,

g(x) = sin(x) + cos(x), g′(x) = cos(x)− sin(x).

h′(x) = f ′(g(x))g′(x)

= eg(x)(cos(x)− sin(x))

= (cos(x)− sin(x))esin(x)+cos(x)

5. We use the Chain Rule here.

f(x) = ex, f ′(x) = ex,

g(x) =
√
x, g′(x) =

1

2
√
x
.

h′(x) = f ′(g(x))g′(x)

= eg(x) · 1

2
√
x

=
1

2
√
x
e
√
x

6. (a) The term initial population refers to the time t = 0. P (0) = 4000e0.02(0) = 4000,87

so the initial population is 4000 bacteria.88

(b) After 5 hours, the population is P (5) = 4000e0.02(5) ≈ 4420.68. Since you can’t89

have a fractional number of bacteria, we usually round up and say the population90

is 4421.91

(c) Since we’re asking for a rate, we need the derivative – just like the velocity is the
rate of change of the displacement. We will use the Chain Rule again.

f(t) = et, f ′(t) = et,

g(t) = 0.02t, g′(t) = 0.02.

P (t) = 4000e0.02t

P ′(t) = 4000f ′(g(t))g′(t)

= 4000eg(t)(0.02)

= 80e0.02t

Now use your calculator to see that P ′(5) ≈ 88.4137. So the population increase92

at 5 hours is approximately 89 bacteria per hour.93

28 September 2022 6 Matsko


	Exponential Functions and e

