
The Natural Logarithm1

It turns out that because the exponential function is so important in calculus, so is its inverse,2

called the natural logarithm. Let’s first review inverse functions.3

Example 14

In order to be invertible, the graph of a function must pass the horizontal line test; in this5

case, we say that the function is one-to-one. That is, no horizontal line can pass through6

more than one point on the graph. So the function y = x2 is not invertible, as we can see in7

Figure 1.8

To get the graph of an inverse function, you reflect the graph along the line y = x (this is9

why we switch x and y to solve for the inverse function). So if a horizontal line goes through10

two points on a graph, when you reflect it, a vertical line will pass through two points of the11

inverse graph. But a function must pass the vertical line test – one input can not have more12

than one output. So y = x2 is not invertible because when you reflect the graph, it fails the13

vertical line test.14
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Figure 1: Graph of y = x2 (red) and its reflection (blue) along y = x.
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In order to create a function which is invertible, it is sometimes necessary to restrict the15

domain. As you can see in Figure 2, if we restrict the domain to [0,∞), then the graph of16

y = x2 does pass the horizontal line test, and so we can take its inverse.17
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Figure 2: Graph of y = x2 with restricted domain (red) and its reflection (blue) along y = x.

This is the geometry of inverse functions. What about the algebra of inverse functions? If
you have an equation of an invertible function, you just switch x and y (which is the algebraic
way to reflect along the line y = x) and solve for y. Remember that because we restricted
the domain, both x and y are positive, so there is no problem taking square roots.

y = x2

x = y2 switch x and y
√
x = y take square roots

y =
√
x

This means that the function y =
√
x is the inverse function of y = x2 (with restricted18

domain).19

This example is a review of how to find an inverse function. If you feel like you need to20

review a bit more, see Section 5.2 on p. 378 of the precalculus text on the website.21
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The Natural Logarithm22

Now let’s look at taking the inverse function of y = ex. Note that y = ex is one-to-one, and23

so we don’t need to worry about restricting the domain.24
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Figure 3: Graph of y = ex (red) and its reflection (blue) along y = x.

Graphically, reflecting y = ex along y = x isn’t difficult. It’s the algebra which is a bit tricky.25

Switching x and y gives x = ey, but the problem is that there is no way to solve for y using26

algebra that we already know.27

The first step is giving a name to this inverse function – it’s called the natural logarithm,28

and the notation is y = lnx. There is no formula for lnx, so any properties of the natural29

logarithm have to be deduced from properties of exponential functions.30

Since y = ex and y = lnx are inverse functions, then31

elnx = x, ln(ex) = x.

32

This is just like saying that for y = x2 and y =
√
x, whenever x ≥ 0, we have

(
√
x)2 = x,

√
x2 = x.
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What else can we say about the natural logarithm? Let’s figure out a useful property of33

logarithms. If a, b > 0, what can we say about ln(ab)? Put c = ln(ab) and follow along.34

ln(ab) = c

eln(ab) = ec substitute into ex

ab = ex inverse function property

eln a · eln b = ec inverse function property

eln a+ln b = ec rules of exponents

ln a + ln b = c ex is one-to-one

ln(ab) = ln a + ln b.

The important point here is that we used a rule of exponents to get a rule of logarithms by35

using the fact that exponential functions and logarithms are inverses of each other.36

We won’t go through deriving all the properties of natural logarithms, but instead summarize37

them below.38

This property is valid when...

eln a = a a > 0

ln(ea) = a any a

ln(ab) = ln a + ln b a, b > 0

ln
(a
b

)
= ln a− ln b a, b > 0

ln(am) = m ln a a > 0, any m

39

We remark that ln a is sometimes called the logarithm to the base e of a, and is written40

ln a = loge a. We will look at other bases later; for now, our focus is on the natural logarithm.41
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Derivative of lnx.42

How can we find the derivative of lnx? Using the limit definition is messy – instead we’ll43

use the fact that
d

dx
ex = ex and use the geometry of inverse functions.44
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Figure 4: Graph of y = ex (red) and its reflection (blue) along y = x.

It looks like there is a lot going on in Figure 4, so let’s look it one piece at a time. We’ll45

start with x = a, so that (a, ln a) is on the graph of y = lnx. You can also see the tangent46

line at this point.47

Now let’s reflect across the line y = x. Algebraically, this amounts to switching x and y48

values, so now the point (ln a, a) is on the graph of y = ex. The tangent line here is also49

drawn.50

What happens when we reflect tangent lines? Suppose that you start with a line with slope
m (such as the tangent to y = lnx). Then

m =
rise

run
=

change in y

change in x
.

Switching x and y (that is, reflecting the line) gives

change in x

change in y
=

run

rise
=

1

m
.
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In other words, when you reflect a line with slope m over y = x, the reflected line has the51

reciprocal slope,
1

m
. (Don’t confuse this with perpendicular lines, whose slopes are negative52

reciprocals. There is no negative sign here.)53

Up to this point, we’ve just studied the geometry of Figure 4. Now it’s time to use the fact

that
d

dx
ex = ex. The point (ln a, a) is on the graph of y = ex. To find the slope of the tangent

line, we plug x = ln a into the derivative of ex, which is just ex. Therefore, using a property
of inverse functions, the slope of the tangent line to y = ex Is

eln a = a.

But this means that
1

m
= a,

so that

m =
1

a
.

So the slope of the tangent line to y = lnx at x = a is just
1

a
. But the slope of the tangent54

line is just the derivative, so we have shown that55

d

dx
lnx =

1

x

56

Seems like a lot of work to find a derivative! Finding the inverse function of y = x2 was57

easy because when we switched x and y to get x = y2, it was easy to solve for y. But for58

the inverse function of y = ex, there is no way to solve x = ey for y. So we needed to rely59

heavily on the geometry of inverse functions in order to find the derivative of y = lnx.60
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Example 261

Suppose h(x) = ln(x3). Find h′(x). We can use the Chain Rule here, with

f(x) = ln(x), f ′(x) =
1

x
,

g(x) = x3, g′(x) = 3x2.

Then

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)
· 3x2

=
1

x3
· 3x2

=
3

x

It turns out that there is another way to solve this problem. Using a rule of logarithms, we
can write

h(x) = 3 ln(x).

Then we just use the derivative of the logarithm to get h′(x) =
3

x
. This method is simpler,62

but it does require understanding the rules of logarithms.63

Example 364

Suppose h(x) = ln(xex). Find h′(x). Again, let’s try the Chain Rule first, with

f(x) = ln(x), f ′(x) =
1

x
,

g(x) = xex, g′(x) = xex + ex,

where g′(x) was found using the Product Rule.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)
· (xex + ex)

=
1

xex
· (xex + ex)

=
xex

xex
+

ex

xex

= 1 +
1

x
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Now we’ll use the rules of logarithms to find a simpler way. Using two of the rules of
logarithms, we can write

h(x) = ln(xex)

= lnx + ln(ex)

= lnx + x

h′(x) =
1

x
+ 1.

It is important to note that simplifying using rules of logarithms is not always possible. But65

when you can apply the rules, very often the process of taking the derivative is much simpler.66
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Homework67

1. Simplify ln(e6).68

2. If a = eb, then b = .69

3. What is ln 1?70

4. Explain, in your own words, why, when you reflect a given line across y = x, the slope71

of the reflected line is the reciprocal of the slope of the given line.72

5. Find the derivative of h(x) = ln

(
ex

x

)
by (1) using the Chain Rule, (2) using rules of73

logarithms first to simplify.74

6. If h(x) = ln(ln(x)), find h′(x).75

7. Find the equation of the tangent line to y = ln x at x = 3. Check that your answer76

makes sense numerically by looking at Figure 4.77

8. We see from the graph that y = lnx is increasing. Show this using calculus.78

9. We see from the graph that y = lnx is concave down. Show this using calculus.79
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Solutions80

1. 6, since exponential and logarithmic functions are inverses of each other.81

2. ln a, since exponential and logarithmic functions are inverses of each other. We often82

describe this by saying that “a logarithm is an exponent.”83

3. 0, since e0 = 1.84

4. Answers will be different for everyone.85

5. Suppose h(x) = ln

(
ex

x

)
. First, we’ll use the chain rule (g′(x) was found using the

Quotient Rule):

f(x) = ln(x), f ′(x) =
1

x

g(x) =
ex

x
, g′(x) =

xex − ex

x2
.

Then

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)

(
xex − ex

x2

)
=

x

ex

(
ex

x
− ex

x2

)
=

x

ex
· e

x

x
− x

ex
· e

x

x2

= 1− 1

x
.

Next, we’ll use rules of logarithms to simplify first.

h(x) = ln

(
ex

x

)
= ln(ex)− lnx

= x− lnx

h′(x) = 1− 1

x
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6. Let h(x) = ln(ln x). We use the Chain Rule with

f(x) = ln(x), f ′(x) =
1

x
,

g(x) = ln(x), g′(x) =
1

x
.

Then

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)
· 1

x

=
1

x lnx
.

7. Let f(x) = lnx. Then f ′(x) =
1

x
, so f ′(3) =

1

3
, which is the slope m of the tangent line.

The point (x1, y1) = (3, ln 3) is also on the tangent line, so we have enough information
to find an equation.

y − y1 = m(x− x1)

y − ln 3 =
1

3
(x− 3)

=
1

3
x− 1

y =
1

3
x− 1 + ln 3

≈ 1

3
x + 0.1

Looking at Figure 4, this make sense. You can see that
rise

run
is about

1

3
, and the86

y-intercept is just slightly above the origin.87

8. Let f(x) = ln x. Then f ′(x) =
1

x
. But the domain of f(x) is all numbers x > 0. Since88

x > 0, then
1

x
> 0 as well, meaning that the function is always increasing.89

9. Continuing from the previous problem,

f ′(x) =
1

x
= x−1

f ′′(x) = −1 · x−2

= − 1

x2
.

Since x2 is always positive, then f ′′(x) is always negative. This means that the function90

is concave down.91
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