Asymptotes and Limits at Infinity, III 1

We saw that $\lim_{x\to\infty} \frac{x^2}{e^x} = 0$, which meant that e^x grows much faster than x^2 as $x \to \infty$. There is nothing special about the exponent of "2," and in fact, we have: 3

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0, \quad n > 0.$$

It is very important to realize that this faster growth is as $x \to \infty$. To see why, go to desmos.com. We will look at the horizontal asymptotes of $f(x) = \frac{x}{x + e^x}$. 5

6

Looking as $x \to \infty$, we see that this limit is of the form $\frac{\infty}{\infty}$, and so we may apply L'Hôpital's Rule.

$$\lim_{x \to \infty} \frac{x}{x + e^x} \stackrel{\text{LR}}{=} \lim_{x \to \infty} \frac{1}{1 + e^x} = 0.$$

We can observe this visually on the graph. It also makes sense, since e^x grows faster than x, and the e^x is in the denominator. 8

Looking at $x \to -\infty$, we see that this limit is of the form $\frac{-\infty}{-\infty}$. This is because $\lim_{x \to -\infty} e^x = 0$, meaning the x is the dominant term in the denominator. So for x far to the left,

$$\frac{x}{x+e^x} \approx \frac{x}{x} = 1.$$

We can also see this using L'Hôpital's Rule:

$$\lim_{x \to -\infty} \frac{x}{x + e^x} \stackrel{\text{LR}}{=} \lim_{x \to -\infty} \frac{1}{1 + e^x} = \frac{1}{1 + 0} = 1.$$

Thus, as we look to the left, we see a horizontal asymptote at y = 1. We summarize these 9 observations. 10

11

4

Suppose n > 0. Then:

1. as $x \to \infty$, e^x dominates x^n , and 2. as $x \to -\infty$, x^n dominates e^x (if x^n is well-defined).

By well-defined, we mean that x^n exists. For example, when x < 0, $x^{1/2} = \sqrt{x}$ is not defined, 12 but $x^{1/3} = \sqrt[3]{x}$ is defined. 13

We could undertake a similar investigation with $\ln x$, but suffice it to say that 14

2 November 2022

Matsko

$$\lim_{x \to \infty} \frac{\ln x}{x^n} = 0, \quad n > 0.$$

¹⁶ Exponentials and Logarithms

We've compared powers of x to e^x and $\ln x$, but what about other bases? Remember, $\ln x = \log_e x$. For example, what about

$$\lim_{x \to \infty} \frac{x^2}{2^x}?$$

If we want to use L'Hôpital's Rule, we need to be able to take the derivative of $h(x) = 2^x$. To do this, we observe that since e^x and $\ln x$ are inverse functions, then $2 = e^{\ln 2}$. This means that

$$2^x = \left(e^{\ln 2}\right)^x = e^{(\ln 2)x}.$$

So we can write h(x) as f(g(x)), where $f(x) = e^x$ and $g(x) = (\ln 2)x$. Then $f'(x) = e^x$ and $g'(x) = \ln 2$. Using the chain rule, we have

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x))g'(x)$$

$$= e^{g(x)} \ln 2$$

$$= e^{(\ln 2)x} \ln 2$$

$$= 2^x \ln 2.$$

Now we can use this in L'Hôpital's Rule.

$$\lim_{x \to \infty} \frac{x^2}{2^x} \stackrel{\text{LR}}{=} \frac{2x}{2^x \ln 2} \stackrel{\text{LR}}{=} \frac{2}{2^x (\ln 2) (\ln 2)} = 0.$$

¹⁷ We can see this by looking at the graphs in **desmos**. So as long as the base is larger than 1 ¹⁸ (or else the exponential function is *decreasing*), these quotients behave similarly. Since the

¹⁹ same calculations work for any base:

20

Suppose
$$b > 1$$
 and $n > 0$. Then:
1. $\frac{d}{dx}b^x = b^x \ln b$,
2. $\lim_{x \to \infty} \frac{x^n}{b^x} = 0$,
3. as $x \to \infty$, b^x dominates x^n , and
4. as $x \to -\infty$, x^n dominates b^x (if x^n is well-defined).

Logarithms can also occur in other bases, as in

$$\lim_{x \to \infty} \frac{\log_2 x}{\sqrt{x}}.$$

²¹ We can tackle limits like these by remembering the change of base formula for logarithms:

Suppose
$$b, c > 0$$
. Then for any other base $a > 1$,
 $\log_b c = \frac{\log_a c}{\log_a b}$.

²³ Why this helps is that we know all about the base e. So we can use a = e in the change of ²⁴ base formula, giving

25

22

Suppose
$$b, c > 0$$
. Then

$$\log_b c = \frac{\ln c}{\ln b}.$$

Let's use this to take the derivative of $p(x) = \log_2 x$. Remember that $\ln 2$ is just a constant.

$$p(x) = \log_2 x$$
$$= \frac{\ln x}{\ln 2}$$
$$p'(x) = \frac{1}{x \ln 2}$$

Now we can use this to evaluate our limit. Note that it is of the form $\frac{\infty}{\infty}$.

$$\lim_{x \to \infty} \frac{\log_2 x}{\sqrt{x}} \stackrel{\text{LR}}{=} \lim_{x \to \infty} \frac{\frac{1}{x \ln 2}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{1}{x \ln 2} \cdot \frac{2\sqrt{x}}{1} = \lim_{x \to \infty} \frac{2}{\sqrt{x} \ln 2} = 0.$$

²⁶ The same calculations work for any base, so:

27

Suppose
$$b > 1$$
 and $n > 0$. Then:
1. $\frac{d}{dx} \log_b x = \frac{1}{x \ln b}$,
2. $\lim_{x \to \infty} \frac{\log_b x}{x^n} = 0$, and
3. as $x \to \infty$, x^n dominates $\log_b x$.

 $2 \ {\rm November} \ 2022$

²⁸ L'Hôpital's Rule Disguised

Now we'll look at some example of limits which, although *not* of the form that allows us to apply L'Hôpital's Rule, they can be rewritten so L'Hôpital's Rule can be applied. The idea is similar to when we rewrote $\frac{1}{x^4}$ as x^{-4} so we could use the Power Rule instead of the Quotient Rule. Best to start with an example.

Find $\lim_{x\to\infty} (x+1)e^{-3x}$. The difficulty with limits like these is that one part blows up, and the other goes to 0. Here, $\lim_{x\to\infty} (x+1)$ DNE $(+\infty)$ and $\lim_{x\to\infty} e^{-3x} = 0$. We need to see what one "wins." We call this type of limit " $0 \cdot \infty$ " or " $\infty \cdot 0$."

But isn't 0 times anything equal to 0? Yes, if that anything is a *number*. But ∞ is *not* a number, but represents numbers getting larger than larger. Below are three limits of the form $\infty \cdot 0$.

$$\lim_{x \to \infty} x \cdot \frac{1}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0,$$
$$\lim_{x \to \infty} x \cdot \frac{1}{x} = \lim_{x \to \infty} 1 = 1,$$
$$\lim_{x \to \infty} x^2 \cdot \frac{1}{x} = \lim_{x \to \infty} x \text{ DNE } (+\infty).$$

So a limit of the form $\infty \cdot 0$ can be 0, a nonzero number, or might not even exist. So you can't automatically say it's 0.

So what can we do? Remember, a negative exponent lets us move an expression to the denominator. So

$$\lim_{x \to \infty} (x+1)e^{-3x} = \lim_{x \to \infty} \frac{x+1}{e^{3x}}.$$

Now it is of the form $\frac{\infty}{\infty}$, so L'Hôpital's Rule can be applied.

$$\lim_{x \to \infty} \frac{x+1}{e^{3x}} \stackrel{\mathrm{LR}}{=} \lim_{x \to \infty} \frac{1}{3e^{3x}} = 0.$$

Let's try another: $\lim_{x\to 0^+} x \ln x$. As you can see in the **desmos** notebook, this limit should be 0, but we'll use calculus to show it. This limit is of the form $0 \cdot \infty$. Note that 0^+ is needed since $\ln x$ is not defined for $x \leq 0$. There's no negative exponent here, so we have two options:

$$\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{x}{1/\ln x} = \lim_{x \to 0^+} \frac{\ln x}{1/x}.$$

The last two limits are of the form $\frac{\infty}{\infty}$. Which one should we try? Let's take them one at a time. For the first, we'll need to take the derivative of $(\ln x)^{-1}$, so let's use the Chain

2 November 2022

Rule first before applying L'Hôpital's Rule. We write $h(x) = (\ln x)^{-1}$ as f(g(x)), where $f(x) = \frac{1}{x} = x^{-1}$ and $g(x) = \ln x$. So $f'(x) = -x^{-2}$ and $g'(x) = \frac{1}{x}$.

$$\begin{split} h(x) &= f(g(x)) \\ h'(x) &= f'(g(x))g'(x) \\ &= -(g(x))^{-2} \cdot \frac{1}{x} \\ &= -(\ln x)^{-2} \cdot \frac{1}{x} \\ &= -\frac{1}{x(\ln x)^2} \end{split}$$

Therefore,

$$\lim_{x \to 0^+} \frac{x}{1/\ln x} \stackrel{\text{LR}}{=} \frac{1}{-\frac{1}{x(\ln x)^2}} = \lim_{x \to 0^+} -x(\ln x)^2$$

The problem? This limit is *still* of the form $0 \cdot \infty$. And instead of a $\ln x$, we have a $(\ln x)^2$, which seems to make the problem worse. So let's try the other way.

$$\lim_{x \to 0^+} \frac{\ln x}{1/x} \stackrel{\text{LR}}{=} \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} \frac{1}{x} \cdot \frac{-x^2}{1} = \lim_{x \to 0^+} (-x) = 0.$$

³⁸ You'll notice that the first way only made the problem harder, but the second way wasn't ³⁹ too difficult. So how do you decide? The rule of thumb is that if you have a limit like this ⁴⁰ involving $\ln x$, just leave the $\ln x$ where it is, and move the other term.

41 Homework

1. Find the derivatives of the following functions.

43 (a) $h(x) = 5^x$

44 (b)
$$h(x) = \log_3 x$$

45 (c)
$$h(x) = \log_2(x^2 + 1)$$

46 (d)
$$h(x) = 4^{3x+1}$$

47 (e)
$$h(x) = \log_5(x^2 5^x)$$

48 2. Find the following limits.

49 (a)
$$\lim_{x \to \infty} e^{-3x} \ln x$$

50 (b) $\lim_{x \to \infty} \frac{4^x}{3^x}$

51 (c)
$$\lim_{x \to -\infty} \frac{4}{3^x}$$

52 (d)
$$\lim_{x \to -\infty} e^{2x} x^2$$

53 (e)
$$\lim_{x \to 0^+} x^2 \ln x$$

54 Solutions

55 1. (a) $h'(x) = 5^x \ln 5$

56 (b) $h'(x) = \frac{1}{x \ln 3}$

(c) Use the Chain Rule with $f(x) = \log_2 x$ and $g(x) = x^2 + 1$. Then $f'(x) = \frac{1}{x \ln 2}$ and g'(x) = 2x. Therefore,

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x))g'(x)$$

$$= \frac{1}{g(x)\ln 2} \cdot 2x$$

$$= \frac{2x}{(x^2 + 1)\ln 2}$$

(d) Use the Chain Rule with $f(x) = 4^x$ and g(x) = 3x + 1. Then $f'(x) = 4^x \ln 4$ and g'(x) = 3.

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x))g'(x)$$

$$= 4^{g(x)}(\ln 4) \cdot 3$$

$$= 3 \cdot 4^{3x+1} \ln 4$$

(e) Use rules of logarithms to simplify first.

$$f(x) = \log_5(x^2 5^x) = \log_5(x^2) + \log_5(5^x) = 2\log_5(x) + x.$$

Then

$$h'(x) = \frac{2}{x \ln 5} + 1$$

2. (a) This limit is of the form $0 \cdot \infty$. Rewrite and use L'Hôpital's Rule.

$$\lim_{x \to \infty} e^{-3x} \ln x = \lim_{x \to \infty} \frac{\ln x}{e^{3x}} \stackrel{\text{LR}}{=} \lim_{x \to \infty} \frac{1/x}{3e^{3x}} = \lim_{x \to \infty} \frac{1}{3xe^{3x}} = 0$$

(b) This limit is of the form $\frac{\infty}{\infty}$. Using L'Hôpital's Rule, we get

$$\lim_{x \to \infty} \frac{4^x}{3^x} \stackrel{\text{LR}}{=} \lim_{x \to \infty} \frac{4^x \ln 4}{3^x \ln 3}.$$

This is still of the form $\frac{\infty}{\infty}$, and using L'Hôpital's Rule again will not help. But using rules of exponents,

$$\frac{4^x}{3^x} = \left(\frac{4}{3}\right)^x.$$

2 November 2022

Matsko

So

57

58

$$\lim_{x \to \infty} \left(\frac{4}{3}\right)^x \text{ DNE } (+\infty),$$

since we are taking a number which is greater than 1 to larger and larger powers.

(c) This limit is of the form $\frac{0}{0}$. Using L'Hôpital's Rule, we get

$$\lim_{x \to -\infty} \frac{4^x}{3^x} \stackrel{\text{LR}}{=} \lim_{x \to -\infty} \frac{4^x \ln 4}{3^x \ln 3}.$$

This is still of the form $\frac{0}{0}$, and using L'Hôpital's Rule again will not help. But using rules of exponents,

$$\frac{4^x}{3^x} = \left(\frac{4}{3}\right)^x.$$

 $\lim_{x \to -\infty} \left(\frac{4}{3}\right)^x = 0,$

 So

since we are taking a number which is greater than 1 to more negative powers.

(d) This limit is of the form $0 \cdot \infty$. So we rewrite as

$$\lim_{x \to -\infty} \frac{x^2}{e^{-2x}} \stackrel{\text{LR}}{=} \lim_{x \to -\infty} \frac{2x}{-2e^{-2x}} \stackrel{\text{LR}}{=} \lim_{x \to \infty} \frac{2}{4e^{-2x}} = 0.$$

(e) This limit is of the form $0 \cdot \infty$. We move the x^2 term.

$$\lim_{x \to 0^+} \frac{\ln x}{x^{-2}} \stackrel{\text{LR}}{=} \lim_{x \to 0^+} \frac{1/x}{-2x^{-3}} = \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = \lim_{x \to 0^+} \frac{1}{x} \cdot \frac{-x^3}{2} = \lim_{x \to 0^+} \frac{-x^2}{2} = 0.$$

 $2 \ {\rm November} \ 2022$