We are working in the integers, denoted by \mathbb{Z} .

We say a divides b and write " $a \mid b$ " if there is an integer k such that ka = b.

If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$, $a \mid (b-c)$, and $a \mid (bc)$. We do not have a result for division (yet) since a/b might not be an integer.

We say $a \pmod{m} = r$ if a = qm + r where $0 \le r < m$. q, r, are the quotient and remainder. m is a positive integer at least 2.

We write $a \equiv b \pmod{m}$ if $a \pmod{m} = b \pmod{m}$, or equivalently, $m \mid (b - a)$.

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:

- 1. $a + c \equiv b + d \pmod{m}$,
- 2. $a c \equiv b d \pmod{m}$, and
- 3. $ac \equiv bd \pmod{m}$.

Now for your homework problems!

- 1. Decide if the following are true or false.
 - (a) 3 | 12.
 - (b) 12 | 3.
 - (c) $7 \mid -14$.
 - (d) 10 | 10.
 - (e) $-1 \mid -1$.
 - (f) $-1 \mid 17$.
- 2. Explain why $4 \mid 0$, but $0 \nmid 4$.
- 3. Suppose you know that $a \mid (b+c)$. Can you conclude that $a \mid b$ and $a \mid c$? Explain your answer.

- 4. a = 72, and $b = 2^m 3^n$, where m, n > 0. If $a \mid b$, what can you conclude about m and n?
- 5. Find the following.
 - (a) $23 \pmod{7}$.
 - (b) $-23 \pmod{7}$.
 - (c) $12 \pmod{12}$.
 - (d) 1,000,000 (mod 11).
 - (e) $(-3)^{97} \pmod{4}$.
 - (f) $(10k-3) \pmod{5}$, where k is any integer.
 - (g) $91p \pmod{7}$, where p is any integer.
- 6. Show, using arithmetic (mod 10), than if n is any positive integer, then n and n^5 end in the same digit.

7. Find a number n such that $n \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{7}$. Can you find *every* number n with this property?