- 1. Decide if the following are true or false.
 - (a) $7 \mid -7$.
 - (b) $-5 \pmod{6} = 5$.
 - (c) $-1 \mid 0$.
 - (d) If $a \mid b$ and $a \mid c$, then $a \mid (bc)$, where a, b, c are integers.
 - (e) $8 \equiv 0 \pmod{3}$.
 - (f) 13 | 91.
- 2. Find the following.
 - (a) 53 (mod 7).
 - (b) $-97 \pmod{5}$.
 - (c) $1,000 \pmod{6}$.
 - (d) $(-7)^{52} \pmod{8}$.
 - (e) $(16k 11) \pmod{4}$, where k is any integer.

3. a = 75, and $b = 3^m 5^n$, where m, n > 0. If $a \mid b$, what can you conclude about m and n?

4. Suppose you take an integer and raise it to the 4th power. What are the possible digits a 4th power can end in? Hint: Use arithmetic (mod 10).

5. Find a number n such that $n \equiv 1 \pmod{6}$ and $n \equiv 2 \pmod{5}$. Then find *every* number n with this property.