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2 Chapter 1 � Preliminaries

1.1 Algebra and Trigonometry Review3

You won’t need everything you learned in Precalculus, but there are several topics which will be4

important. Review by working through the following problems.5

Review Problems6

1. Find an equation of a line in the form y = mx + b for a line with slope −2 which passes7

through the point (1,−6).8

2. Find an equation of a line in the form y = mx + b for a line passing through points (3,−5)9

and (−2, 1).10

3. Simplify by factoring the numerator:
x2 − x− 6

x− 3
.11

4. Simplify by factoring the numerator:
2x2 + 3x− 5

x− 1
.12

5. Rationalize the denominator:
3√

7− 2
.13

6. Rationalize the numerator:

√
x− 1

x− 1
.14

7. Rationalize the numerator:

√
x−
√
a

x− a
.15

8. Simplify: (
√
x)4.16

9. Expand, combining exponents: x2(x+
√
x).17

10. Write using negative exponents:
2

x4
− 3√

x
.18

11. Write using positive exponents in the denominator: x−1/3 + x−5.19

12. Expand, combining exponents: x3
(
√
x+

1√
x

)
.20

13. Factor out x2 from the following expression: 3x7 + x7/2.21

14. Factor out x3/2 from the following expression: 2x4 − x3/2.22

15. Add by finding a common denominator:
2

5
+

7

6
23

16. Simplify using a common denominator:
1

2x
− 2

y
24

17. Simplify:

1

2
+

1

x
x

25
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18. Simplify:

1

3
− 1

y

3− y
26

19. Convert from degrees to radians:27

(a) 60◦28

(b) 180◦29

(c) −210◦30

20. Convert from radians to degrees:31

(a)
3π

4
32

(b) −π
2

33

(c)
5π

3
34

21. Evaluate the following, giving exact answers.35

(a) cos 036

(b) sin 90◦37

(c) tan
π

3
38

(d) sin
5π

4
39

(e) cos 300◦40

(f) tan
3π

2
41

22. Graph two full periods of the following trigonometric functions. Label both axes carefully.42

(a) y = sin(x)43

(b) y = cos(x)44

(c) y = tan(x)45
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Assessment Expectations: For algebra problems, any like those above. For the Unit Circle,46

you will be given a blank Unit Circle, with questions like:47

1. What angle in degrees corresponds to Point A?48

2. What angle in radians corresponds to Point B?49

3. What are the coordinates of Point C?50

4. What is sin(60◦)? Can be cos or tan, and the angle may be in radians.51

Solutions52

1.

y = mx+ b

y = −2x+ b

−6 = −2(1) + b

−4 = b

y = −2x− 4

2. To find the slope, use m =
y2 − y1
x2 − x1

, with (x1, y1) = (3,−5) and (x2, y2) = (−2, 1).

m =
y2 − y1
x2 − x1

=
1− (−5)

−2− 3

= −6

5

Now use y = mx+ b with the point (3,−5).

y = −6

5
x+ b

−5 = −6

5
(3) + b

−25

5
+

18

5
= b

−7

5
= b

y = −6

5
x− 7

5

3.

x2 − x− 6

x− 3
=

(x− 3)(x+ 2)

x− 3

= x+ 2
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4.

2x2 + 3x− 5

x− 1
=

(x− 1)(2x+ 5)

x− 1

= 2x+ 5

5.

3√
7− 2

=
3√

7− 2
·
√

7 + 2√
7 + 2

=
3(
√

7 + 2)

7 + 2
√

7− 2
√

7− 4

=
3(
√

7 + 2)

3

=
√

7 + 2

6.
√
x− 1

x− 1
=

√
x− 1

x− 1
·
√
x+ 1√
x+ 1

=
x+
√
x−
√
x− 1

(x− 1)(
√
x+ 1)

=
x− 1

(x− 1)(
√
x+ 1)

=
1√
x+ 1

7.
√
x−
√
a

x− a
=

√
x−
√
a

x− a
·
√
x+
√
a√

x+
√
a

=
x+
√
x
√
a−
√
x
√
a− a

(x− a)(
√
x+
√
a)

=
x− a

(x− a)(
√
x+
√
a)

=
1√

x+
√
a

8.

(
√
x)4 =

(
x1/2

)4
= x(1/2)4

= x2

9.

x2(x+
√
x) = x2(x+ x1/2)

= x2 · x+ x2 · x1/2

= x3 + x5/2
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10.
2

x4
− 3√

x
= 2x−4 − 3x−1/2

11.

x−1/3 + x−5 =
1
3
√
x

+
1

x5

12.

x3
(√

x+
1√
x

)
= x3(x1/2 + x−1/2)

= x3 · x1/2 + x3 · x−1/2

= x7/2 + x5/2

13.

3x7 + x7/2 = x2(3x7−2 + x7/2−2)

= x2(3x5 + x3/2)

14.

2x4 − x3/2 = x3/2(2x4−3/2 − x3/2−3/2)
= x3/2(2x5/2 − 1)

15.

2

5
+

7

6
=

2

5
· 6

6
+

7

6
· 5

5

=
12

30
+

35

30

=
47

30

16.

1

2x
− 2

y
=

1

2x
· y
y
− 2

y
· 2x

2x

=
y

2xy
− 4x

2xy

=
y − 4x

2xy

17. Method 1: First, combine the numerator.

1

2
+

1

x
=

1

2
· x
x

+
1

x
· 2

2

=
x+ 2

2x
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Then multipliy by the reciprocal of the denominator.

x+ 2

2x
x

=
x+ 2

2x
· 1

x

=
x+ 2

2x2

Method 2: The least common denominator in the fractions is 2x. Multiply top and bottom
by 2x.

1

2
+

1

x
x

=

1

2
+

1

x
x
· 2x

2x

=

1

2
· 2x+

1

x
· 2x

x · 2x
=
x+ 2

2x2

18. Method 1: First, combine the numerator.

1

3
− 1

y
=

1

3
· y
y
− 1

y
· 3

3

=
y − 3

3y

Then multipliy by the reciprocal of the denominator.

y − 3

3y

y
=
y − 3

3y
· 1

3− y

=
y − 3

3y(3− y)

=
−(3− y)

3y(3− y)

= − 1

3y

Method 2: The least common denominator in the fractions is 3y. Multiply top and bottom
by 3y.

1

3
− 1

y

y
=

1

3
− 1

y

3− y
· 3y

3y

=

1

3
· 3y − 1

y
· 3y

(3− y) · 3y

=
y − 3

(3− y) · 3y

=
−(3− y)

(3− y) · 3y

= − 1

3y
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19. Use the conversion factor 1 degree =
π

180
radians.53

(a) 60 · π
180

=
π

3
54

(b) 180 · π
180

= π55

(c) −210 · π
180

= −7π

6
56

20. Use the converstion factor 1 radian =
180

π
degrees.57

(a)
3π

4
· 180

π
= 135◦58

(b) −π
2
· 180

π
= −90◦59

(c)
5π

3
· 180

π
= 300◦60

21. Use the unit circle. If cos θ = 0, then tan θ is undefined. Otherwise, tan θ =
sin θ

cos θ
.61

(a) 162

(b) 163

(c)
√

364

(d) − 1√
2

65

(e)
1

2
66

(f) Undefined67

22. See desmos.com for an excellent online graphing calculator.68
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1.2 Introduction to Physics1

Much of calculus was developed to study physics. While a course in physics is not required for2

calculus, there are a few fundamental concepts from physics that we will use over and over again.3

This is a summary of those concepts.4

Most of us are familiar with driving a car. The speedometer measures the speed at which you’re5

traveling, while the odometer measures the distance you’ve traveled.6

Let’s suppose you take a two-hour drive, and you drive at a constant rate of 30 km/hr. Below is a7

graph of your starting position, at x = 0. What is your ending position?

+x
0 60−60

Figure 1.1: Starting position.

8

If you drove east for two hours (we’ll describe going in the positive direction as going east, and9

going in the negative direction as going west), you’d be 60 km east of where you began.

+x
0 60−60

Figure 1.2: Ending position A.

10

But if you drove west for two hours, you’d be 60 km west of where you began.

+x
0 60−60

Figure 1.3: Ending position B.

11

But maybe you drove east for one hour, and then turned around and drove west for an hour. Then12

you’d be right back where you started.

+x
0 60−60

Figure 1.4: Ending position C.

13
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Since you’re driving at a constant speed, your speed graph would look like this.

speed(t) (km/hr)

t (hr)
2

30

Figure 1.5: Speed graph.

14

The main issue is this: you can’t know your ending position by looking at the speed graph. There is15

not enough information. That is why the concept of velocity is so important in science. Essentially,16

velocity is speed and direction. When you’re driving east, your speed and velocity are both 3017

km/hr. But when you’re driving west, your speed is 30 km/hr, but your velocity is −30 km/hr.18

What about a graph of the distance you traveled? Since distance equals rate times time and you’re19

driving at a constant speed, you’ve traveled 30 × t km in t hours. So the distance traveled up to20

time t is represented by the graph below.21

distance(t) (km)

t (hr)
2

30

60

Figure 1.6: distance(t) = 30t

This graph tells you that you’ve driven a total of 60 km, but there is no way to know where you22

ended up. Where you end up relative to where you began is called displacement in physics.23

Similar to how velocity is speed with a direction, displacement is distance with a direction. So your24

displacement in Ending position A is 60 km, but your displacement in Ending position B is −6025

km, since you ended up 60 km west of where you started. Your displacement in Ending position C26

is 0 km, since you’re back where you started.27
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Ending position A28

Let’s see how we apply the concepts of velocity and displacement to each of the three scenarios29

described above. We’ll redraw Figure 1.2 with an arrow representing the path taken.30

+x
0 60−60

Figure 1.7: Ending position A.

In this scenario, speed and velocity are the same: 30 km/hr for two hours. The letter “v” is used31

in physics to represent velocity. This is shown on the left of Figure 1.8.32

v(t) (km/hr)

t (hr)
2

30

−30

s(t) (km)

t (hr)
2

30

−30

60

−60

Figure 1.8: Velocity and displacement graphs for ending position A.

In this case, the distance is the same as the displacement, so the displacement graph is identical33

to Figure 1.6. We use the letter “s” for displacment, since the letted “d” is used for describing34

derivatives in calculus. Notice that the velocity is positive here, and the slope of the displacement35

is positive. This is not a coincidence, and is another concept we’ll be exploring in calculus.36
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Ending position B37

Let’s redraw Figure 1.3 to reflect the path taken.38

+x
0 60−60

Figure 1.9: Ending position B.

In this case, you drove west for two hours, and so your velocity is −30 km/hr for two hours. This39

is shown on the left of Figure 1.10. Because your velocity is negative, you end up 60 km west from40

where you started: a total displacement of −60 km. Notice that the displacement graph has a41

negative slope because the velocity is negative. This is shown on the right of Figure 1.10.42

v(t) (km/hr)

t (hr)
2

30

−30

s(t) (km)

t (hr)
2

30

−30

60

−60

Figure 1.10: Velocity and displacement graphs for ending position B.
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Ending position C43

Here, Figure 1.4 is redrawn to include the path taken.

+x
0 6030−60

Figure 1.11: Ending position C.
44

v(t) (km/hr)

t (hr)
2

30

−30

s(t) (km)

t (hr)
2

30

−30

60

−60

Figure 1.12: Velocity and displacement graphs for ending position C.

Here, you drove east for one hour (30 km/hr) and west for the next hour (−30 km/hr). So the45

velocity curve jumps down to −30 after one hour.46

But for ending position C, you start driving east, so the displacement graph is sloping upward. But47

after an hour – since you turned around – the displacement graph begins sloping downward, so by48

the time two hours have gone by, your displacement is 0 km, since you ended where you started.49

The important point is this: if I gave you one of the velocity graphs for any of the three scenarios,50

you could tell me exactly where I ended up. But all three ending positions have the same speed51

graph (shown in Figure 1.5). So in physics and science, “velocity” is a much more useful concept52

than “speed.”53

Also, if I gave you one of the displacement graphs for any of these scenarios, you could tell me54

exactly what my trip looked like and where I ended up. But if I just gave you the distance graph55

(as shown in Figure 1.6), the only thing you could tell me was that I drove 60 km. There would56

not be enough information to conclude any more about the nature of my trip.57

Summary58

While speed and distance are concepts well-suited to day-to-day life, in the world of physics and59

science, they are not very precise. Graphs of speed and distance provide very little information60

about the nature of a journey. However, by introducing the concepts of velocity and displacement,61

we get an extremely accurate representation of what is actually going on. Essentially, calculus is62

an in-depth study of the relationship between velocity and displacement graphs.63
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Homework64

1. Each of the following is the velocity graph of a car trip. For each graph, (1) write a sentence65

explaining the trip in words, and (2) draw the corresponding displacement graph. Label your66

graphs carefully!67

v(t) (km/hr)

t (hr)
3

40

−40

(a)

v(t) (km/hr)

t (hr)
4

20

−20

(b)

v(t) (km/hr)

t (hr)
3

30

−30

(c)

2. Each of the following is the displacement graph of a car trip. For each graph, (1) write a68

sentence explaining the trip in words, and (2) draw the corresponding velocity graph. Label69

your graphs carefully!70

s(t) (km)

t (hr)
4

50

−50

100

−100

(a)

s(t) (km)

t (hr)
6

30

−30

60

−60

(b)

s(t) (km)

t (hr)
3

40

−40

80

−80

(c)
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Solutions71

1. (a) You drove 40 km/hr west for three hours.72

s(t) (km)

t (hr)
3

60

−60

−120
73

(b) You drove west at 20 km/hr for two hours, and then turned around and drove east at74

20 km/hr for two hours.75

s(t) (km)

t (hr)
4

40

−40

76

(c) You drove east at 30 km/hr for one hour, turned around and drove west at 30 km/hr77

for another hour, and then turned around and drove east for one hour at 30 km/hr.78

s(t) (km)

t (hr)
3

30

−30
79
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2. (a) You drove 100 km west in four hours, and therefore drove at a velocity of −25 km/hr.80

v(t) (km/hr)

t (hr)
4

25

−25

−50
81

(b) You drove 30 km west in three hours – at a velocity of −10 km/hr, and then drove east82

30 km in three hours – at a velocity of 10 km/hr.83

v(t) (km/hr)

t (hr)
6

10

−10

84

(c) You drove 40 km east in one hour (40 km/hr), and then turned around and drove 80 km85

west in two hours (a velocity of −40 km/hr).86

v(t) (km/hr)

t (hr)
3

40

−40

87
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1.3 What Calclulus is All About1

We will look at the basic concepts behind calculus by studying three examples. Much of calculus2

comes from physics, so we’ll focus our attention on velocity and displacement. In physics, velocity3

and displacement can be positive or negative, so we use these terms instead of speed and distance.4

Example 15

The graphs below represent a road trip you might go on. You drive at a constant rate of 20 km/hr6

for 4 hours, and so v(t) = 20.

v(t) (km/hr)

t (hr)
4

20

s(t) (km)

t (hr)
4

40

Figure 1.13: Velocity graph (left), and displacement graph (right).

7

Since displacement = rate × time, then s(t) = 20t. This is graphically represented below by the8

blue rectangle.9

v(t) (km/hr)

t (hr)
3

20

s(t) (km)

t (hr)
3

60

Figure 1.14: Velocity graph (left), and displacement graph (right).

Let’s look at what happens after driving for three hours. You’ve traveled a total of s(3) = 60 km,10

which is represented by the blue rectangle; that is, the area under v(t) up to three hours. Also, the11

slope of the line at (3, 60) on the displacement curve is v(3), which is 20 km/hr. It might look like12

the slope is 1, but remember that the units on the axes are different.13
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This example (and the ones that follow) illustrate this very important principle in physics:14

The area underneath the velocity curve up to time t corresponds
to the displacement at time t, and the slope of the displacement
curve at time t is the velocity at time t.

Using function notation, we would say that the area up to t
underneath v(t) is s(t), and the slope of the tangent line at
(t, s(t)) is given by v(t).

15

Example 216

Now we’ll take a look at a road trip where your velocity is not constant. Since you are driving at17

40 km/hr after 4 hours, your velocity is given by v(t) = 10t.18

v(t) (km/hr)

t (hr)
4

20

40

s(t) (km)

t (hr)
4

40

Figure 1.15: Velocity graph (left), and displacement graph (right).

Since your velocity is not constant, we can’t use displacement = rate × time. But we can still use19

the fact that s(t) is the area under v(t) up to t hours, just as in Example 1.20

v(t) (km/hr)

t (hr)
t 4

20

s(t) (km)

t (hr)
t 4

40

Figure 1.16: Velocity graph (left), and displacement graph (right).

Since the blue area is a triangle, we can use A =
1

2
bh, where b = t is the base and h = 10t is the

height. So

s(t) =
1

2
· b · h

=
1

2
· t · 10t

= 5t2.
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This function is graphed on the right; it is a parabola.21

In Example 1, we saw that the slope of the line at (3, s(3)) was 20 km/hr. In this example, s(3) = 45.22

But what is the slope of the parabola at (3, 45)? Now we’ve entered calculus territory. We’re not23

only interested in the slope of a line, we’re interested in the slope of a curve.24

We can accomplish this by looking at the tangent line to a curve. Below (middle graph), you can25

see that the blue line intersects the parabola only at the point (3, 45). In geometry, when a line26

intersects a curve at just one point, we call this a tangent line. When you zoom in on the blue27

box (right graph), you see that near the point (3, 45), it’s hard to tell the difference between the28

tangent line and the parabola. This is an important property in calculus.29

What is the slope of this tangent line? Since v(3) = 30, this tangent line has a slope of 30 km/hr.

v(t) (km/hr)

t (hr)
t 4

20

s(t) (km)

t (hr)
t 4

40

Figure 1.17: Velocity graph (left), tangent line (middle), zooming in (right).

30
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Example 331

Let’s look at another road trip. This time, you start out at 20 km/hr, but you slow down at a32

constant rate. After 2 hours, you turn around and start driving in the opposite direction. This is33

why we use velocity instead of speed. If you are driving east with a positive velocity, it means that34

if you turn around and drive west, your velocity is negative.35

v(t) (km/hr)

t (hr)
4

20

−20

s(t) (km)

t (hr)
4

10

Figure 1.18: Velocity graph (left), displacement graph (right).

Since you start out at 20 km/hr and end up at −20 km/hr after 4 hours (meaning you end up36

driving in the opposite direction), then v(t) = 20 − 10t, which you get by finding the equation of37

the line between (0, 20) and (4,−20).38

v(t) (km/hr)

t (hr)
t 4

20

−20

b1

b2

h

Figure 1.19: Area under the velocity graph (left), area of the trapezoid (enlarged, right).

As in Example 2, we can find the displacement curve by looking at an area. This time, the area is

a trapezoid, so we need the formula A =
1

2
(b1 + b2)h from geometry. In our example, b1 is always

20, b2 corresponds to v(t), and h is just t. This means that

s(t) =
1

2
· (b1 + b2) · h

=
1

2
· (20 + v(t)) · t

=
1

2
(20 + (20− 10t)) · t

= 20t− 5t2.
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Now look at the graph below. Since v(t) is positive here, the slope of the tangent line to the curve39

s(t) is positive.

v(t) (km/hr)

t (hr)
t 4

20

-20

v(t) = 20− 10t

s(t) (km)

t (hr)
t 4

10

s(t) = 20t− 5t2

Figure 1.20: Velocity graph (left), displacement graph (right).

40

But in the next graph, the value of v(t) is negative, and you can see that the slope of the tangent41

line to the curve is negative.42

v(t) (km/hr)

t (hr)
4

20

-20

t

s(t) (km)

t (hr)
t 4

10

Figure 1.21: Velocity graph (left), displacement graph (right).

Now when t = 4, you can see that s(4) = 0. This represents the area under the velocity curve up43

to t = 4. How can this area be zero?44

v(t) (km/hr)

t (hr)
4

20

-20

s(t) (km)

t (hr)
4

10

Figure 1.22: Velocity graph (left), displacement graph (right).

In calculus, areas can be negative. Let’s say when your velocity is positive, you’re driving east, so45

when your velocity is negative, you’re driving west. Now the area below the velocity curve when46

the velocity is positive is how far you traveled east. But the area above the velocity curve when the47

velocity is negative is how far you traveled west – and this area is negative. Looking at the graph48
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on the left, the triangles are congruent, but one has positive area and the other has negative area.49

Their areas cancel out, which is why your total displacement is 0 – you’ve traveled just as far while50

driving east as you did while driving west.51

So considering velocity and displacement, instead of speed of distance, is very important in calculus.52

When your velocity is positive, the corresponding slope of the tangent line on the displace-
ment curve will be positive.

When your velocity is negative, you’re traveling in the opposite direction, and the corre-
sponding slope of the tangent line on the displacement curve will be negative.

The area corresponding to traveling with a positive velocity will always be positive, so your
displacement will be positive.

The area corresponding to traveling with a negative velocity in the opposite direction will
always be negative, so your displacement will be negative.

53
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Homework54

1. Below is a graph of a velocity curve. Find an equation for the displacement curve.55

v(t) (km/hr)

t (hr)

−30

4

56

2. Below is a graph of a velocity curve. Find an equation for the displacement curve.57

v(t) (km/hr)

t (hr)
3

60

58

3. Below is a graph of a velocity curve. Find an equation for the displacement curve.59

v(t) (km/hr)

t (hr)
4

16

60
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Solutions61

1. Since the velocity is constant, we find displacement by multiplying the velocity by time, and62

so s(t) = −30t.63

2. This problem is similar to Example 2.64

v(t) (km/hr)

t (hr)
t 3

60

65

Since we are at 60 km/hr after 3 hr, the slope of the line must be
60

3
= 20. Since the line

goes through the origin, the equation of the line is v(t) = 20t. Finding the area of the triangle
shown above (just as in Example 2), we get

s(t) =
1

2
· b · h

=
1

2
· t · 20t

= 10t2.

3. This problem is similar to Example 3.66

v(t) (km/hr)

t (hr)
t 4

16

67

To find the area of the trapezoid, we first need to find an equation for the line. We see that
the line passes through (0, 16) and (4, 0). Thus, the slope is

m =
y2 − y1
x2 − x1

=
0− 16

4− 0

= −4.

Remember that b is the y-intercept, which is 16 in this example. So an equation for the line68

is v(t) = −4t+ 16.69
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Here, b1 is always 16, b2 corresponds to v(t), and h is just t. This means that

s(t) =
1

2
· (b1 + b2) · h

=
1

2
· (16 + v(t)) · t

=
1

2
(16 + (−4t+ 16)) · t

=
1

2
(32− 4t) · t

= 16t− 2t2.
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Chapter 270

The First Derivative71
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2.1 The Derivative1

Example 12

Please visit the link desmos page on Secant Lines for an interactive demonstration of the geometry3

of secant lines. The purpose of this demo is to see how slopes of secant lines approach the slope of4

the tangent line through a point.5

4

8

16

Figure 2.1: Graph of y = x2 on the domain [0, 4].

Why is this important? If you look at Figure 2.1, you can see the tangent line drawn through (2, 4).6

Now to find the equation of this line, we either need two points, or a point and a slope. All we7

have is one point.8

Using the geometry of secant lines, we will be able to calculate the slope of the tangent line. So9

let’s look at this from an algebraic point of view. In the demonstration, we focused on the value10

x = 3, but now we’ll look at the same geometry where x can be any value.11

https://www.desmos.com/calculator/n3ekdzd49g
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4

8

16

x x+ h

(x+ h, (x+ h)2)

(x, x2)

Figure 2.2: Graph of y = x2 on the domain [0, 4].

Begin with the point (x, x2) on the graph of y = x2. To find a secant line through this point, consider12

an x-value of x+h, with y-value (x+h)2, so the other point on the graph is (x+h, (x+h)2). Draw13

the secant line between these two points, as shown in Figure 2.2.14

Now use the slope formula to calculate the slope. Let the points be (x1, y1) = (x, x2) and (x2, y2) =
(x+ h, (x+ h)2). Then

m =
y2 − y1
x2 − x1

=
(x+ h)2 − x2

(x+ h)− x

=
(x+ h)2 − x2

h

Remember, we want to let h get smaller and smaller until it’s eventually 0. The problem is that if15

we try to substitute h = 0 at this point, we’ll get
0

0
, which is undefined.16

To solve this problem, we use the idea of a limit in calculus. The idea of a limit is the fundamental17

new concept in calculus which you likely haven’t seen in precalculus. We’re thinking along these18

lines: “If we look at the slopes of secant lines for small values of h, it looks like they’re all approaching19

the same value. But we can’t actually plug in h = 0, since we’ll get
0

0
. So we need to take the limit20

of these slopes as h approaches 0.”21

There is a new calculus notation for this. It’s

m = lim
h→0

(x+ h)2 − x2

h
.

We read it as “m is the limit as h→ 0 of (x+ h)2 − x2 over h.”22
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Think of it this way. As we saw in the demo, the idea of a tangent line is very geometrical. But23

actually calculating the slopes of tangent lines takes a bit of algebra. The limit is the concept in24

calculus which brings together the geometrical and algebraic aspects of calculus.25

Let’s continue working to find the slope. The next step is to simplify our expression for m as much
as possible and see where that leaves us.

m = lim
h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2hx+ h2 − x2

h

= lim
h→0

2hx+ h2

h

= lim
h→0

h(2x+ h)

h

= lim
h→0

(2x+ h).

That’s as far as we can go. But do you notice what happened? Now we can plug in h = 0. That’s26

because we canceled out the h from the denominator, so we’re not dividing by 0 any more.27

So we have

m = lim
h→0

(2x+ h)

= 2x+ 0

= 2x.

But exactly what does the “2x” tell us? Look back at Figure 2.1. What is the equation of the28

tangent line at x = 2, which is the line shown there? Since the slope of a tangent line is 2x, then29

the slope of this line has to be 2 ·2 = 4. This means that we are looking for the line passing through30

(2, 4) with a slope of 4. Using the method of your choice, you get y = 4x− 4.31

What have we done? Recall that the problem with finding an equation for a tangent line is that a32

tangent line is defined to be a line touching a curve at one point. We do not have a second point.33

But by using the concept of a limit, we can find the slope of the tangent line by taking a limit of34

the slopes of secant lines.35

Let’s now look at some common calculus notation. While we wrote y = x2, very often we write36

f(x) = x2. Depending on which notation is used (both are common), we would write
dy

dx
= 2x or37

f ′(x) = 2x, and call 2x the derivative of y, or the derivative of f(x).38

Rewriting our previous work using f ′(x), we would say that

f ′(x) = lim
h→0

(x+ h)2 − x2

h
.

But f(x) = x2 and f(x+ h) = (x+ h)2, so we could also say that

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.
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Written this way, we say that given the function f(x), this is the definition of the derivative of39

f(x). Deserves a double box.40

Definition of the Derivative

If f(x) is a function, we define the derivative
of f(x) to be f ′(x), which is

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

41

Example 242

Find the derivative of f(x) =
√
x.43

Let’s use our new definition to do this. We have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

√
x+ h−

√
x

h
.

How can we simplify this? The trick, which we saw earlier, is to rationalize the numerator. Let’s
see what happens.

lim
h→0

√
x+ h−

√
x

h
= lim

h→0

√
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x

= lim
h→0

x+ h+
√
x+ h ·

√
x−
√
x ·
√
x+ h− x

h(
√
x+ h+

√
x)

= lim
h→0

h

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x
.

Stop and look. What just happened here is because we rationalized the numerator, we got to a44

point where we could cancel the h in the denominator. And remember, since we want h to go to 0,45

we have to be able to cancel the h if we want to go any further.46

Because when we cancel that h, now we can plug in h = 0.

lim
h→0

1√
x+ h+

√
x

=
1√

x+ 0 +
√
x

=
1√

x+
√
x

=
1

2
√
x
.



32 Chapter 2 � The First Derivative

4

2

Figure 2.3: Graph of y =
√
x on the domain [0, 4].

Let’s see how we would use the fact that f ′(x) =
1

2
√
x
. A graph of f(x) is shown in Figure 6.19,47

with a tangent line drawn at the point (1, 1).48

How would we get an equation of the tangent line? The slope is given by

f ′(1) =
1

2
√

1
=

1

2
,

and a point on the tangent line is (1, 1). So an equation for the tangent line is y =
1

2
x+

1

2
.49

Example 350

What is f ′(x) if f(x) =
1

x
? Again, we go back and use the definition of the derivative. Note that we

multiply both top and bottom by (x+ h)x since that is the common denominator of the fractions
in the numerator.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1

x+ h
− 1

x
h

= lim
h→0

1

x+ h
− 1

x
h

· (x+ h)x

(x+ h)x

= lim
h→0

1

x+ h
· (x+ h)x− 1

x
· (x+ h)x

h(x+ h)x

= lim
h→0

x− (x+ h)

h(x+ h)x

= lim
h→0

x− x− h
h(x+ h)x

= lim
h→0

−h
h(x+ h)x
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Now we can cancel out the h. When using the definition of the derivative, the h must always cancel
out. Always. This is one way to know that you’re on the right track. So

f ′(x) = lim
h→0

−1

(x+ h)x
.

Because the h canceled, plugging in h = 0 is not a problem anymore. So

lim
h→0

−1

(x+ h)x
=

−1

(x+ 0)x

= − 1

x2
.

One thing you probably noticed is that these problems have involved a lot of algebra. There is no51

way around this – you have to keep simplifying until you can get the h to cancel. Once you do get52

the h to cancel, you can be pretty sure you’re on the right track.53

Example 454

As mentioned, there is usually quite a bit of algebra in working with the definition of the derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

So let’s break it down into steps.55

Let’s start with f(x) = x2− 3x. How do we evaluate f(x+ h)? We substitute x+ h everywhere we56

see an x. If you sometimes get stuck with this, here’s something to try.57

1. First, rewrite the function with boxes.

f
( )

=
( )2

− 3
( )

.

2. Next, put x+ h in each empty box.

f
(
x+ h

)
=
(
x+ h

)2
− 3

(
x+ h

)
.

3. We don’t need the boxes any more.

f(x+ h) = (x+ h)2 − 3(x+ h).

4. Expand. Be careful when distributing the minus sign.

f(x+ h) = x2 + 2xh+ h2 − 3x− 3h.
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5. Now substitute into the limit definition and simplify until the h cancels. Again, watch the
minus signs. Note that for the h to cancel, every term in the numerator that does not contain
h should cancel.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

x2 + 2xh+ h2 − 3x− 3h− (x2 − 3x)

h

= lim
h→0

x2 + 2xh+ h2 − 3x− 3h− x2 + 3x

h

= lim
h→0

2xh+ h2 − 3h

h

= lim
h→0

h(2x+ h− 3)

h

= lim
h→0

(2x+ h− 3)

= 2x− 3.

Assessment Expectations: You do not have to find the derivative using boxes. But I have58

found that many students start off with an incorrect expression for f(x+ h). If your first step isn’t59

correct, it’s going to be difficult to get the h to cancel. Use it only if it helps you.60
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Homework61

1. Using the definition of the derivative, find f ′(x) if f(x) = −3x.62

2. (a) Using the definition of the derivative, find f ′(x) if f(x) = x− 2x2.63

(b) Find the equation of the tangent line at x = 1. Graph both f(x) and the tangent line64

on desmos to visually verify that you have the correct tangent line.65

3. (a) Using the definition of the derivative, find f ′(x) if f(x) =
√
x+ 2.66

(b) Find the equation of the tangent line at x = 2. Graph both f(x) and the tangent line67

on desmos to visually verify that you have the correct tangent line.68

4. (a) Using the definition of the derivative, find f ′(x) if f(x) =
1

x− 1
.69

(b) Find the equation of the tangent line at x = 3. Graph both f(x) and the tangent line70

on desmos to visually verify that you have the correct tangent line.71
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Solutions72

1.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

−3(x+ h)− (−3x)

h

= lim
h→0

−3x− 3h+ 3x

h

= lim
h→0

−3h

h

= lim
h→0

(−3)

= −3.

2. (a)

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

x+ h− 2(x+ h)2 − (x− 2x2)

h

= lim
h→0

x+ h− 2x2 − 4xh− 2h2 − x+ 2x2

h

= lim
h→0

h− 4xh− 2h2

h

= lim
h→0

h(1− 4x− 2h)

h

= lim
h→0

(1− 4x− 2h)

= 1− 4x− 2(0)

= 1− 4x.

(b) f(1) = −1 and f ′(1) = 1− 4(1) = −3, so the slope of the line is −3 and the line passes73

through (1,−1). This results in the line y = −3x+ 2.74
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75

3. (a)

f ′(x) = lim
h→0

√
x+ 2 + h−

√
x+ 2

h

= lim
h→0

√
x+ h+ 2−

√
x+ 2

h
·
√
x+ h+ 2 +

√
x+ 2√

x+ h+ 2 +
√
x+ 2

= lim
h→0

x+ h+ 2 +
√
x+ h+ 2 ·

√
x+ 2−

√
x+ 2 ·

√
x+ h+ 2− x− 2

h(
√
x+ h+ 2 +

√
x+ 2)

= lim
h→0

h

h(
√
x+ h+ 2 +

√
x+ 2)

= lim
h→0

1√
x+ h+ 2 +

√
x+ 2

=
1√

x+ 0 + 2 +
√
x+ 2

=
1√

x+ 2 +
√
x+ 2

=
1

2
√
x+ 2

(b) f(2) = 2 and f ′(2) =
1

2
√

2 + 2
=

1

4
, and so we are looking for a line with slope

1

4
which76

passes through the point (2, 2). This results in y =
1

4
x+

3

2
.77
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4. (a)

f ′(x) = lim
h→0

1

x+ h− 1
− 1

x− 1
h

= lim
h→0

1

x+ h− 1
− 1

x− 1
h

· (x+ h− 1)(x− 1)

(x+ h− 1)(x− 1)

= lim
h→0

1

x+ h− 1
· (x+ h− 1)(x− 1)− 1

(x− 1)
· (x+ h− 1)(x− 1)

h(x+ h− 1)(x− 1)

= lim
h→0

x− 1− (x+ h− 1)

h(x+ h− 1)(x− 1)

= lim
h→0

x− 1− x− h+ 1

h(x+ h− 1)(x− 1)

= lim
h→0

−h
h(x+ h− 1)(x− 1)

= lim
h→0

−1

(x+ h− 1)(x− 1)

=
−1

(x+ 0− 1)(x− 1)

= − 1

(x− 1)2

(b) f(3) =
1

2
and f ′(3) = − 1

(3− 1)2
= −1

4
, so we are looking for a line with slope −1

4
which78

passes through the point

(
3,

1

2

)
. This line is y = −1

4
x+

5

4
.79
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2.2 The Derivative of y = sin(x).1

Let’s look at the derivatives of a few common functions. We’ll start with f(x) = sin(x); two full2

periods are graphed in Figure 2.4. What is the slope of the tangent line at x = 0? In other words,3

what is f ′(0)?4

f

x
2π

1

Figure 2.4: Graph of f(x) = sin(x) with tangent line at x = 0.

We will use the following definition of the derivative.5

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

6

We first start with x = 0, write out the definition substituting in 0 for x, and then simplify a little
bit.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

sin(h)− sin(0)

h
since f(x) = sin(x)

= lim
h→0

sin(h)

h
since sin(0) = 0.

Up until now, we were able to use algebra to make the “h” cancel out so we could just substitute7

h = 0. But it is not possible to do that here. So how do we proceed?8

There are two other ways we can look at limits: numerically and graphically. We’ll start with9

numerically. Since we are looking at a limit at h → 0, you can use your calculator to look at the10

quotient
sin(h)

h
for values of h closer and closer to 0.11

I set my calculator to radian mode (important!) and rounded to six decimal places. As h gets

closer to 0 from the left and right, it looks like the quotient
sin(h)

h
gets closer and closer to 1. Using

limit notation, we would write

lim
h→0

sin(h)

h
= 1.
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h sin(h)/h

−0.1 0.998334

−0.01 0.999983

−0.001 1.000000

−0.0001 1.000000

0.1 0.998334

0.01 0.999983

0.001 1.000000

0.0001 1.000000

Table 2.1: Approximating lim
h→0

sin(h)

h
.

It is worth noting that if your calculator were in degree mode, it would look like this limit is12

approximately 0.017453. Units of radians make trigonometry much easier (as far as calculus is13

concerned). This is very similar to choosing appropriate units in science. The metric system is far14

better suited to science than inches, ounces, etc.15

Another way to guess lim
h→0

sin(h)

h
is to look at the ratio

sin(h)

h
as a function itself, as in Figure 2.5.16

Figure 2.5: Graph of g(h) =
sin(h)

h
.

17

I made with graph with desmos and took a screen shot. It looks like it crosses the y-axis at 1 (just
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like the limit). It’s important to say “looks like” since you can’t actually evaluate

g(0) =
sin(0)

0
=

0

0
.

But most graphing programs are able to “fill in the hole” at x = 0 to get a smooth curve.18

There is also a more complicated mathematical proof using geometry and trigonometry, but it’s19

more than we need. For the functions we’ll be looking at, if looking at a limit numerically and20

graphically gives the same result, then you can be sure you’ve found the right limit.21

To recap, we found that22

lim
h→0

sin(h)

h
= 1.

23

But this was the limit we needed to evaluate to find the slope of the tangent line at x = 0, and so24

the slope of this line is 1.25

We started just with looking at x = 0 since we needed to see different ways to evaluate limits. So26

with f(x) = sin(x), let’s find f ′(x) for every x. To do this, we’ll need an identity from trigonometry:27

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

28

Now let’s start with the definition.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

sin(x+ h)− sin(x)

h
since f(x) = sin(x)

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h
using the identity

This looks a bit more complicated than other limits we’ve seen. Let’s take a few steps to rearrange
terms.

f ′(x) = lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= lim
h→0

[
sin(x) · cos(h)

h
+ cos(x) · sin(h)

h
− sin(x)

h

]
splitting apart

= lim
h→0

[
sin(x)

(
cos(h)− 1

h

)
+ cos(x) · sin(h)

h

]
combining sin(x) terms
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Now since h goes to 0, x does not change in this limit. So we can factor out terms only containing29

x. If the limit involves h→ a, you can never factor out any expression containing h from the limit.30

f ′(x) = lim
h→0

[
sin(x)

(
cos(h)− 1

h

)
+ cos(x) · sin(h)

h

]
= sin(x) · lim

h→0

cos(h)− 1

h
+ cos(x) · lim

h→0

sin(h)

h

The first limit might not look familiar, but the second one does – we started off by finding this31

exact limit: it is 1.32

What about the first limit? Since we already worked one limit like this in detail, we won’t do33

another one. But when you look at this limit numerically and graphically, you see that:34

lim
h→0

cos(h)− 1

h
= 0.

35

How can we use this? Basically, we rewrote the quotient
f(x+ h)− f(x)

h
in such a way that is

involves limits we can derive numerically and graphically. So we just substitute in the values of
these limits.

f ′(x) = sin(x) · lim
h→0

cos(h)− 1

h
+ cos(x) · lim

h→0

sin(h)

h

= sin(x) · 0 + cos(x) · 1
= cos(x).

Done! So when f(x) = sin(x), then f ′(x) = cos(x). So cos(x) is the derivative of sin(x), which we36

often write37

d

dx
sin(x) = cos(x).

38
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Exercises39

1. Show numerically and graphically that

lim
h→0

cos(h)− 1

h
= 0.

2. By following a similar sequence of steps as for sin(x), but using a different trigonometric
identity, show that

d

dx
cos(x) = − sin(x).

3. Let f(x) =
√
x+ 1, so that f ′(x) =

1

2
√
x+ 1

.40

(a) Graph this function on desmos.41

(b) Where is f ′(x) defined?42

(c) What is f ′(3)?43

(d) Find the equation of the tangent line at x = 3.44

4. Let f(x) = x3 − 3x.45

(a) Graph this function on desmos.46

(b) Using the definition of the derivative, show that f ′(x) = 3x2 − 3.47

(c) Where is f ′(x) defined?48

(d) What is f ′(2)?49

(e) Find the equation of the tangent line at x = 2.50
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Solutions51

1. Create a chart like we did for
sin(h)

h
and observe the numbers keep getting closer to 0 as h52

gets closer to 0. Note: if your numbers are not matching, be sure your calculator is in radian53

mode.54

h (cos(h)− 1)/h

−0.1 0.049958

−0.01 0.005000

−0.001 0.000500

−0.0001 0.000050

0.1 0.049958

0.01 0.005000

0.001 0.000500

0.0001 0.000050

55

You can check this graphically using desmos or a graphing calculator.56

2. The identity we need is

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).

Now let’s use the definition of the derivative with f(x) = cos(x).

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

cos(x+ h)− cos(x)

h
since f(x) = cos(x)

= lim
h→0

cos(x) cos(h)− sin(x) sin(h)− cos(x)

h
using the identity

Now rearrange terms.

f ′(x) = lim
h→0

cos(x) cos(h)− sin(x) sin(h)− cos(x)

h

= lim
h→0

[
cos(x) · cos(h)

h
− sin(x) · sin(h)

h
− cos(x) · 1

h

]
splitting apart

= lim
h→0

[
cos(x)

(
cos(h)− 1

h

)
− sin(x) · sin(h)

h

]
combining cos(x) terms

Recall the following limits.

lim
h→0

cos(h)− 1

h
= 0, lim

h→0

sin(h)

h
= 1.
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Substituting in, we get

f ′(x) = cos(x) · 0− sin(x) · 1
= − sin(x)

3. (a) Do this online.57

(b) f ′(x) is defined when x+ 1 > 0, since you can’t have 0 in the denominator or a negative58

number inside a square root. So x > −1, or (−1,∞) using interval notation.59

(c)

f ′(3) =
1

2
√

3 + 1
=

1

4
.

(d) We know the slope is
1

4
from (c). f(3) =

√
3 + 1 = 2, so a point on the line is (3, 2).

y − y1 = m(x− x1)

y − 2 =
1

4
(x− 3)

y − 2 =
1

4
x− 3

4

y =
1

4
x+

5

4

(a) Do this online.60

(b)

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)3 − 3(x+ h)− (x3 − 3x)

h

= lim
h→0

��x
3 + 3x2h+ 3xh2 + h3 −��3x− 3h−��x

3 +��3x

h

= lim
h→0

3x2h+ 3xh2 + h3 − 3h

h

= lim
h→0

(
3x2h

h
+

3xh2

h
+
h3

h
− 3h

h

)
= lim

h→0
(3x2 + 3xh+ h2 − 3)

= 3x2 − 3.

(c) Polynomials are defined for all x. In interval notation, f(x) is defined on (−∞,∞).61

(d)
f ′(2) = 3(22)− 3 = 9.

(e) We know the slope is 9 from (d). Since f(2) = 2, we use the point (2, 2).

y − y1 = m(x− x1)
y − 2 = 9(x− 2)

y − 2 = 9x− 18

y = 9x− 16
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2.3 The Geometry of Derivatives1

We just learned how to find a derivative using the geometric definition derived from looking at2

secant lines. The process of finding a derivative algebraically is sometimes rather tedious. Here,3

we’ll look at the geometrical meaning of the derivative. Because we want to emphasize the important4

concepts, we’ll look at a basic function, f(x) = x2, shown below, with it’s derivative, f ′(x) = 2x.5

y

x
−2 2

4

2

−2

−4

y

x
−2 2

4

2

−2

−4

Figure 2.6: Graph of f(x) = x2 (left) with derivative f ′(x) = 2x (right).

Let’s look at exactly what knowledge we can gain by knowing the derivative. First, we can find6

the slope of a tangent at any given point. So, since f(1) = 1, we know that the tangent line goes7

through (1, 1). And since f ′(x) = 2x, this line has a slope of f ′(1) = 2 · 1 = 2, shown below. Note8

the corresponding point on the derivative graph, (1, 2).9
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Figure 2.7: Graph of f(x) = x2 (left) with derivative f ′(x) = 2x (right).

We now have enough information to work out an equation for the tangent line at x = 1, since we10

know the slope m = 2 and a point (1, 1) on the line. For reference, we recall that a line with slope11

m which passes through the point (x1, y1) can be described by the following equation:12
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y − y1 = m(x− x1).

13

Substituting in our values: m = 2, x1 = 1, and y1 = 1, we get

y − 1 = 2(x− 1),

which simplifies to y = 2x−1. In Figure 2.7, you can observe that the slope is 2 and the y-intercept14

is −1. So we can use the derivative to find an equation of the tangent line at a specific point.15

What else does the derivative tell us? Let’s look now at the case when x > 0; we look at the specific16

case x = 0.5 in the graphs below.17
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Figure 2.8: Graph of f(x) = x2 (left) with derivative f ′(x) = 2x (right); x = 0.5.

Notice that the graph is increasing when x > 0, and so the tangent line has a positive slope. We
can see this by looking at the graph. But in addition to this, we have, when x > 0,

f ′(x) = 2x

> 2 · 0 since x > 0

= 0.

We can summarize this as follows:18

If f ′(x) > 0 for some value of x, then the function
f(x) is increasing at that value of x.

19
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Now let’s look at the case when x < 0; the case when x = −1.5 is graphed in Figure 2.9.20
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Figure 2.9: Graph of f(x) = x2 (left) with derivative f ′(x) = 2x (right); x = −1.5.

In this case, the graph is decreasing when x < 0, and so the tangent line has a negative slope. We
can see this by looking at the graph. But we can also see this algebraically; when x < 0,

f ′(x) = 2x

< 2 · 0 since x < 0

= 0.

We can summarize this case as follows:21

If f ′(x) < 0 for some value of x, then the function
f(x) is decreasing at that value of x.

22

Let’s summarize what we’ve observed so far.23

f ′(x) Where What happens

f ′(x) < 0 (−∞, 0) f(x) is decreasing

f ′(x) > 0 (0,∞) f(x) is increasing

24

So we can understand some features of the graph of a function by looking at its derivative. It is25

always true that if f ′(x) < 0, then f(x) is decreasing, and if f ′(x) > 0, then f(x) is increasing. But26

the case when f ′(x) = 0 is a little trickier. We’ll be looking at this case in detail later.27
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Exercises28

1. Using the definition of the derivative, find f ′(x) if f(x) = 3.Write a short sentence interpreting29

this geometrically.30

2. Using the definition of the derivative, show that if f(x) = ax, then f ′(x) = a. In this example,31

a is just a number, like 3. Write a short sentence interpreting this geometrically.32

3. Let f(x) = cos(x).33

(a) Graph this function on desmos. Use a domain of [0, 2π] (you can use the wrench icon in34

the upper right and type “pi” for π).35

(b) What is f ′
(π

2

)
?36

(c) Find the equation of the tangent line at x =
π

2
.37

(d) Where is f ′(x) = 0? Remember, the domain is [0, 2π]. By inspecting the graph, decide38

if there is a minimum, maximum, or inflection point at these values.39

(e) Where is the function increasing?40

(f) Where is the function decreasing?41

4. Let f(x) be a function – you don’t know exactly what f(x) is, but you are given that f ′(x) =42

x2(x− 2)2. The function is defined on all real numbers.43

(a) Where is this function increasing?44

(b) Where is this function decreasing?45

(c) When is f ′(x) = 0? Based on what you found in (a) and (b), decide if f(x) has a46

minimum, maximum, or inflection point at these values.47

(d) You are given that f(3) = 12. Find an equation of the tangent line at x = 3.48
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Solutions49

1.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

3− 3

h

= lim
h→0

0

= 0

Since y = 3 is a horizontal line, this means that its slope is 0.50

2.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

a(x+ h)− ax
h

= lim
h→0

ax+ ah− ax
h

= lim
h→0

ah

h

= lim
h→0

a

= a.

This confirms that the line y = ax is a line with slope a.51

3. (a) Do this online.52

(b) f ′
(π

2

)
= − sin

(π
2

)
= −1.53

(c) We know the slope is −1 from (b). Since f
(π

2

)
= 0, we use the point

(π
2
, 0
)
.

y − y1 = m(x− x1)

y − 0 = −1
(
x− π

2

)
y = −x+

π

2

(d) f ′(x) = − sin(x) = 0 exactly when x = 0, π, 2π (given our knowledge of the unit circle54

and the fact that the domain is [0, 2π]). Looking at the graph, we see a local maximum55

at x = 0 and x = 2π, and a local minimum at x = π.56

(e) The function is increasing wherever we have f ′(x) > 0. Looking at the graph of y =57

− sin(x) on desmos, we observe that f ′(x) = − sin(x) is positive on the interval (π, 2π).58

By visually inspecting the graph of f(x) = cos(x), we observe that f(x) is increasing on59

this interval.60
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(f) The function is decreasing wherever we have f ′(x) < 0. Looking at the graph of y =61

− sin(x) on desmos, we observe that f ′(x) = − sin(x) is negative on the interval (0, π).62

By visually inspecting the graph of f(x) = cos(x), we observe that f(x) is decreasing on63

this interval.64

4. In this problem, you are not given the graph of the function, but you should still be able to65

answer the following questions.66

(a) f ′(x) = x2(x − 2)2, but x2 and (x − 2)2 are both positive. So f ′(x) is always positive,67

therefore f(x) is always increasing. In interval notation, this would be (−∞,∞).68

(b) Based on the answer to (a), f(x) is never decreasing.69

(c) Since f ′(x) is in factored form, the zeros are easy to find: x = 0 and x = 2. Now if70

there were a minimum at x = 0, we would go from decreasing to increasing, which is71

impossible since f(x) is never decreasing. Likewise, if there were a maximum, we would72

go from increasing to decreasing, again impossible. So there must be inflection points73

at these two values of x.74

(d) Since f ′(3) = 32 · (3 − 2)2 = 9, the slope of the tangent line is 9. Since f(3) = 12, we
know that (3, 12) is a point on the tangent line. We can use these to get an equation of
the line.

y − y1 = m(x− x1)
y − 12 = 9(x− 3)

y − 12 = 9x− 27

y = 9x− 15
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Chapter 31

Using Rules of Differentiation2
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3.1 Rules of Differentiation3

We’re finished using the definition of the derivative for a while. Now we want to learn how to use4

some rules which will make differentiating more complex functions possible.5

Example 16

We have seen that
d

dx
x = 1,

d

dx
x2 = 2x. Using the definition of the derivative, we see that

d

dx
x3 = lim

h→0

(x+ h)3 − x3

h

= lim
h→0

��x
3 + 3x2h+ 3xh2 + h3 −��x

3

h

= lim
h→0

3x2h+ 3xh2 + h3

h

= lim
h→0

(
3x2h

h
+

3xh2

h
+
h3

h

)
= lim

h→0
(3x2 + 3xh+ h2)

= 3x2.

Note that dividing through by h is an alternative to factoring the h out. Both methods will work.7

This pattern continues, and we have the Power Rule:

d

dx
(xn) = nxn−1

This works even if the exponent is not a positive integer. We’ve seen this twice before. Using the
Power Rule, we have

d

dx

1

x
=

d

dx
x−1

= −1x−1−1

= −x−2

= − 1

x2

and

d

dx

√
x =

d

dx
x1/2

=
1

2
x1/2−1

=
1

2
x−1/2

=
1

2
√
x
,



Section 3.1 � Rules of Differentiation 55

both found before using the definition of the derivative. Now we have the Power Rule, and so can8

use this instead of the definition.9

Example 210

We have seen that
d

dx
x2 = 2x and

d

dx
sin(x) = cos(x). Adding or subtracting functions, or mul-

tiplying functions by a number, do not affect the algebra needed in the definition of a derivative.
So

d

dx
(x2 + sin(x)) = 2x+ cos(x)

d

dx
(sin(x)− x2) = cos(x)− 2x

d

dx
5x2 = 5(2x) = 10x

d

dx
(−3 sin(x)) = −3 cos(x)

Example 311

However, multiplying and dividing functions does affect the algebra when using the definition of the
derivative. So you cannot just multiply or divide derivatives. Let’s look at multiplying functions
first. Here, we use the Product Rule:

d

dx
(f(x)g(x)) = f(x)g′(x) + g(x)f ′(x)

We won’t prove this here, but let’s look at an example to see how to use it. We’ll find
d

dx
x cos(x).

Here, f(x) = x and g(x) = cos(x), so that

f(x) = x f ′(x) = 1

g(x) = cos(x) g′(x) = − sin(x)

Now substitute in the Product Rule.

d

dx
x cos(x) = f(x)g′(x) + g(x)f ′(x)

= x(− sin(x)) + cos(x) · 1
= −x sin(x) + cos(x)

This is much easier than going back and using the definition of the derivative.12
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Example 413

When dividing functions, we use the Quotient Rule:

d

dx

(
f(x)

g(x)

)
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

This looks a bit more complicated, but as long as you substitute carefully, you’ll be fine. We’ll use

it to find
d

dx

sin(x)

x2
. Here are the substitutions:

f(x) = sin(x) f ′(x) = cos(x)

g(x) = x2 g′(x) = 2x

Now substitute into the Quotient Rule:

d

dx

sin(x)

x2
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
x2 · cos(x)− sin(x)(2x)

(x2)2

=
x2 cos(x)− 2x sin(x)

x4

=
x(x cos(x)− 2 sin(x))

x4

=
x cos(x)− 2 sin(x)

x3

Notice that the x cancels. Be sure to make any simple cancellations when possible.14

Example 515

Let’s briefly review function composition. Suppose f(x) = cos(x) and g(x) = x3. Then

(f ◦ g)(x) = f(g(x))

= cos(g(x))

= cos(x3).

For taking derivatives using the Chain Rule (done in the next section), we’ll need to do this in16

reverse. As an example, if h(x) = (3x+ 2)4, find f(x) and g(x) such h(x) = f(g(x)).17

To think about this, notice that g(x) is the function you evaluate first, and f(x) is the function18

you evaluate last. Think about how you would evaluate h(x) using your calculator. If you have to19

find h(x), the first thing you’d do is evaluate 3 · 5 + 2 = 17, and the last thing you’d do is take 174.20

So g(x) = 3x+ 2 and f(x) = x4.21
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Summary of Rules of Differentiation22

Power Rule:
d

dx
(xn) = nxn−1

Sum Rule:
d

dx
(f(x) + g(x)) = f ′(x) + g′(x)

Difference Rule:
d

dx
(f(x)− g(x)) = f ′(x)− g′(x)

Constant Multiple Rule:
d

dx
(cf(x)) = cf ′(x)

Product Rule:
d

dx
(f(x)g(x)) = f(x)g′(x) + g(x)f ′(x)

Quotient Rule:
d

dx

(
f(x)

g(x)

)
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

Chain Rule:
d

dx
(f ◦ g)(x) = f ′(g(x))g′(x)

23
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Exercises24

1. Find the deriviatives of the following functions using the appropriate rule.25

(a) h(x) = 3x5 − x326

(b) h(x) = 2 cos(x)− x227

(c) h(x) = x3 sin(x)28

(d) h(x) =
x2

cos(x)
29

2. Review Paul’s Online Notes on function composition, if necessary. For each of the following30

functions, find f(x) and g(x) so that h = f ◦ g.31

(a) h(x) = (2x− 1)532

(b) h(x) = sin2(x)33

(c) h(x) =
1

x3 + x
34

(d) h(x) = cos(2x+ 1)35
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Solutions36

1. (a)

h′(x) =
d

dx
(3x5 − x3)

= 3(5x4)− 3x2

= 15x4 − 3x2

(b)

h′(x) =
d

dx
(2 cos(x)− x2)

= 2(− sin(x))− 2x

= −2 sin(x)− 2x

(c) Use the following substitutions in the Product Rule.

f(x) = x3 f ′(x) = 3x2

g(x) = sin(x) g′(x) = cos(x)

Then

h′(x) = f(x)g′(x) + g(x)f ′(x)

= x3 cos(x) + sin(x) · 3x2

= x3 cos(x) + 3x2 sin(x).

(d) Use the following substitutions in the Quotient Rule.

f(x) = x2 f ′(x) = 2x

g(x) = cos(x) g′(x) = − sin(x)

Then

h′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
cos(x) · 2x− x2(− sin(x))

(cos(x))2

=
2x cos(x) + x2 sin(x)

cos2(x)

2. (a) f(x) = x5, g(x) = 2x− 1.37

(b) f(x) = x2, g(x) = sin(x).38

(c) f(x) =
1

x
, g(x) = x3 + x.39

(d) f(x) = cos(x), g(x) = 2x+ 1.40
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3.2 Using Differentiation Rules1

When you are given a function f(x) and need to take the derivative, which rule(s) should you use?2

It’s not always obvious.3

Example 14

Let f(x) =
x4 − 3x2 + 5x

x
. Since f(x) is a fraction, your first thought might be to use the quotient

rule. This isn’t wrong, but it’s way too much work. In this case, it’s easier to divide out the x first.

f(x) =
x4 − 3x2 + 5x

x

=
x4

x
− 3x2

x
+

5x

x
= x3 − 3x+ 5

Now, it’s easy to find f ′(x) using the power rule: f ′(x) = 3x2 − 3.5

Example 26

Let f(x) =
cos(x)

x−2
. Again, it’s tempting to use the quotient rule. But recall that

1

x−2
= x2.

So it’s easier to write f(x) = x2 cos(x) and use the product rule.

f(x) = x2 cos(x)

f ′(x) = (x2)(− sin(x)) + cos(x)(2x)

= −x2 sin(x) + 2x cos(x).

Example 37

Let f(x) = (x2 + 1)(x− 3). Yes, you can use the product rule here. But in this case, it’s simpler to
FOIL out f(x) and then just use the power rule.

f(x) = (x2 + 1)(x− 3)

= x3 − 3x2 + x− 3

f ′(x) = 3x2 − 6x+ 1

The common theme here is that we rewrote each function so that an easier differentiation rule can8

be used. There’s no “magic formula” for how to do this, you just have to practice. But before9

jumping into a problem, it’s always a good idea to take a moment to see if the function can be10

rewritten to make it easier to differentiate.11
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Example 412

Usually, when you see a function inside of another function, you need to use the chain rule. Oc-
casionally, there may be a different way. Suppose h(x) = (x3 + 1)2. You might try the chain rule
with f(x) = x2 and g(x) = x3 + 1. Then f ′(x) = 2x and g′(x) = 3x2, so that

h′(x) = f ′(g(x))g′(x)

= 2(g(x)) · 3x2

= 2(x3 + 1)(3x2)

= 6x2(x3 + 1).

But it also possible to FOIL out f(x) first. Here’s what you get.

h(x) = (x3 + 1)2

= x6 + 2x3 + 1

h′(x) = 6x5 + 6x2

Since 6x2(x3+1) = 6x5+6x2, both methods give the same answer. One way isn’t necessarily easier13

than the other, so either way you choose to do it is OK.14

Example 515

Let f(x) =
5

x6
. This is a fraction, so you might be tempted to use the quotient rule. But it’s

easier to use rules of exponents to rewrite f(x) = 5x−6. You cannot just use the power rule on the
denominator; the entire function must be of the form axn for some n.

f(x) = 5x−6

f ′(x) = 5 · (−6)x−6−1

= −30x−7

Note that the exponent must be “−7,” not “−5,” since we have to subtract 1 from the exponent.16
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Find the derivatives of the following functions. Some problems will be easier if you rewrite them17

first, so take a moment to look before you leap. Use Wolfram Alpha to check your answers.18

1. h(x) =
2x

3x4
19

2. h(x) =
x2 + 1

x
20

3. h(x) =
x

x2 + 1
21

4. h(x) = (5x− 3)1022

5. h(x) = (5x− 3)−1023

6. h(x) = x3
√
x24

7. h(x) = sin(x)
√
x25

8. h(x) =
ax+ b

ax− b
Hint: Treat a and b like numbers, so

d

dx
a =

d

dx
b = 0.26

9. h(x) = sin(x) cos(x)27

10. h(x) =
√

3x− 528

11. h(x) = cos(x3)29

12. h(x) = cos3(x)30

13. h(x) = tan(x) (Hint: Use the quotient rule.)31

14. h(x) =
sin(x)

x−3
32

15. For each of the following, simplify/rewrite if possible, and state which rule you would use to33

take the derivative. Do not actually take the derivative. This problem is for helping you to34

decide which rule to use.35

(a) sin(6x2 + 1)36

(b)
3

x7
37

(c)
cos(x)

x−2
38

(d) x2
√
x39

(e)
x3 − 3x2

x2
40

(f)
x+ 1

x− 1
41

(g) (x2 + 1)842

(h)
3

x−4
43
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Solutions44

1. First, rewrite.

2x

3x4
=

2

3x3

=
2

3
x−3

Then use the Power Rule.

d

dx

2

3
x−3 =

2

3
· (−3)x−3−1

= −2x−4

= − 2

x4

2. First rewrite.

x2 + 1

x
=
x2

x
+

1

x
= x+ x−1

Then use the Power Rule.

d

dx
(x1 + x−1) = 1 · x1−1 − 1 · x−1−1

= 1− x−2

= 1− 1

x2

3. Here, we need to use the Quotient Rule.

f(x) = x f ′(x) = 1

g(x) = x2 + 1 g′(x) = 2x

d

dx

x

x2 + 1
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
(x2 + 1) · 1− x · 2x

(x2 + 1)2

=
x2 + 1− 2x2

(x2 + 1)2

=
1− x2

(x2 + 1)2

Note that we do not expand the denominator when using the Quotient Rule.45
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4. Use the Chain Rule with f(x) = x10 and g(x) = 5x− 3.

f(x) = x10 f ′(x) = 10x9

g(x) = 5x− 3 g′(x) = 5

Then

h′(x) = f ′(g(x))g′(x)

= 10(g(x))9 · 5
= 50(5x− 3)9

5. Use the Chain Rule with f(x) = x−10 and g(x) = 5x− 3.

f(x) = x−10 f ′(x) = −10x−11

g(x) = 5x− 3 g′(x) = 5

Then

h′(x) = f ′(g(x))g′(x)

= −10(g(x))−11 · 5
= −50(5x− 3)−11

= − 50

(5x− 3)11

Note that some resources may leave the exponent as negative, while others will rewrite with46

a positive exponent in the denominator.47

6. First, combine exponents.

x3
√
x = x3x1/2

= x7/2

Then use the Power Rule.

h′(x) =
7

2
x7/2−1

=
7

2
x5/2

7. Use the Product Rule with f(x) = sin(x) and g(x) =
√
x.

f(x) = sin(x) f ′(x) = cos(x)

g(x) =
√
x g′(x) =

1

2
√
x

Then

h′(x) = f(x)g′(x) + g(x)f ′(x)

= sin(x) · 1

2
√
x

+
√
x · cos(x)

=
sin(x)

2
√
x

+
√
x cos(x)
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8. Use the Quotient Rule.

f(x) = ax+ b f ′(x) = a

g(x) = ax− b g′(x) = a

d

dx

ax+ b

ax− b
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
(ax− b) · a− (ax+ b) · a

(ax− b)2

=
a2x− ab− (a2x+ ab)

(ax− b)2

=
a2x− ab− a2x− ab

(ax− b)2

= − 2ab

(ax− b)2

9. Use the Product Rule with f(x) = sin(x) and g(x) = cosx.

f(x) = sin(x) f ′(x) = cos(x)

g(x) = cos(x) g′(x) = − sin(x)

Then

h′(x) = f(x)g′(x) + g(x)f ′(x)

= sin(x)(− sin(x)) + cos(x) · cos(x)

= cos2(x)− sin2(x)

10. Use the Chain Rule.

f(x) =
√
x f ′(x) =

1

2
√
x

g(x) = 3x− 5 g′(x) = 3

Then

h′(x) = f ′(g(x))g′(x)

=
1

2
√
g(x)

· 3

=
3

2
√

3x− 5
.

11. Use the Chain Rule.

f(x) = cos(x) f ′(x) = − sin(x)

g(x) = x3 g′(x) = 3x2
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Then

h′(x) = f ′(g(x))g′(x)

= − sin(g(x)) · 3x2

= −3x2 sin(x3).

12. Use the Chain Rule. Remember the notation: cos3(x) = (cos(x))3.

f(x) = x3 f ′(x) = 3x2

g(x) = cos(x) g′(x) = − sin(x)

Then

h′(x) = f ′(g(x))g′(x)

= 3(g(x))2(− sin(x))

= −3 sin(x) cos2(x).

13. Write tan(x) =
sin(x)

cos(x)
and use the Quotient Rule.48

f(x) = sin(x) f ′(x) = cos(x)

g(x) = cos(x) g′(x) = − sin(x)

d

dx

sin(x)

cos(x)
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
cos(x) · cos(x)− sin(x)(− sin(x))

(cos(x))2

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)

= sec2(x).

Here, we used the identity cos2(x) + sin2(x) = 1 and the definition sec(x) =
1

cos(x)
.49

14. Rewrite
sin(x)

x−3
= x3 sin(x) and use the Product Rule.50

f(x) = x3 f ′(x) = 3x2

g(x) = sin(x) g′(x) = cos(x)
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Then

h′(x) = f(x)g′(x) + g(x)f ′(x)

= x3 · cos(x) + sin(x) · 3x2

= x3 cos(x) + 3x2 sin(x)

= x2(x cos(x) + 3 sin(x)).

You do not have to factor out in the last step, but be aware that when using other resources,51

answers may be written this way.52

15. (a) Use the Chain Rule.53

(b) Rewrite as 3x−7 and use the Power Rule.54

(c) Rewrite as x2 cos(x) and use the Product Rule.55

(d) Combine exponents to get x5/2 and use the Product Rule.56

(e) Simplify by dividing and use the Power Rule.57

(f) Use the Quotient Rule.58

(g) Use the Chain Rule.59

(h) Rewrite as 3x4 and use the Power Rule.60
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Chapter 41

The Second Derivative2
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4.1 Revisiting f ′(x) = 03

In Chapter 2, we began our study of the algebra and geometry of derivatives. We saw that:4

If f ′(x) > 0 for some value of x, then the function
f(x) is increasing at that value of x.

If f ′(x) < 0 for some value of x, then the function
f(x) is decreasing at that value of x.

5

But what happens when f ′(x) = 0? This is a more complicated scenario, illustrated in Figure 4.1.6

y

x
−2 2

4

2

−2

−4

f(x) = x2

y

x
−2 2

4

2

−2

−4

f(x) = −x2

y

x
−2 2

4

2

−2

−4

f(x) = x3

y

x
−2 2

4

2

−2

−4

f(x) = −x3

Figure 4.1: What can happen when f ′(x) = 0.

Let’s look at these graphs in detail. In each graph, the blue line is tangent at x = 0, and is a7

horizontal line with slope 0, and so f ′(0) = 0 in each case.8

1. For f(x) = x2, we have what is called a local minimum at x = 0. This means as we go from9

left to right, the function decreases until it hits (0, 0), and then starts increasing.10

2. For f(x) = −x2, we have what is called a local maximum at x = 0. This means as we go11

from left to right, the function increases until it hits (0, 0), and then starts decreasing.12

3. For f(x) = x3, we have what is called an inflection point, or a point of inflection. In13

this case the function keeps increasing as we pass through (0, 0).14

4. For f(x) = −x3, we also have an inflection point, but the function keeps decreasing as we15

pass through (0, 0).16

How do we know which is which? Yes, we can look at the graph. But to decide without a graph, we17

have to use calculus. In this section, we’ll learn to use sign charts for f ′(x) to make this decision,18

and in the next section, we’ll look at how to use second derivatives.19
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Making Sign Charts20

We’ll first look at the far left graph in Figure 4.1, f(x) = x2. To make a sign chart for f ′(x) :21

1. Find all values of x where f ′(x) = 0;22

2. Plot these values on a number line;23

3. This divides the line into intervals – choose one point from each interval (one that is easy to24

evaluate) and evaluate f ′(x); if f ′(x) > 0, write “+” over the interval, and if f ′(x) < 0, write25

“−” above the interval. We’ll first go through these steps, and then interpret the results.26

Since f(x) = x2, then using the Power Rule, we get f ′(x) = 2x.27

1. If f ′(x) = 2x = 0, then x = 0.28

2. This gives the following number line:29

0
30

3. Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′(−1) = 2(−1)

= −2

< 0

f ′′(1) = 2(1)

= 2

> 0.

This yields the following number line:31

0

− +

32

How do we interpret this? On the interval (−∞, 0), f ′(x) is negative, and so we know the function33

is decreasing on this interval. But on (0,∞), we see that f ′(x) is positive, and so the function is34

increasing on this interval. Because we go from decreasing to increasing as we pass through x = 0,35

this means there must be a local minimum at x = 0. This can be confirmed by looking at the graph.36
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Now let’s look at the rightmost graph in Figure 4.1, f(x) = −x3. We’ll make a sign chart here as37

well. Since f(x) = −x3, then using the Power Rule, we get f ′(x) = −3x2.38

1. If f ′(x) = −3x2 = 0, then x = 0.39

2. This gives the following number line:40

0
41

3. Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′(−1) = −3(−1)2

= −3

< 0

f ′′(1) = −3(1)2

= −3

< 0.

This yields the following number line:42

0

− −

43

How do we interpret this? On the interval (−∞, 0), f ′(x) is negative, and so we know the function44

is decreasing on this interval. But on (0,∞), we see that f ′(x) is also negative, and so the function45

is decreasing on this interval as well. Because we continuously decrease as we pass through x = 0,46

this means there must be an inflection point at x = 0. This can also be confirmed by looking at47

the graph.48

The algebra for these examples was fairly easy, but the point is to introduce the concepts. This is49

one more example of a recurring theme: we make informal observations about a function by looking50

at its graph, and then we back up our observations using calculus.51
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Example 152

Now we’ll look at a little more complicated example. Consider the function f(x) = x3 − 3x + 2,53

shown in Figure 4.2.

y

x
−2 2

4

2

Figure 4.2: Graph of f(x) = x3 − 3x+ 2.

54

It looks like there is a local maximum at x = −1 and a local minimum at x = 1. Let’s verify this55

by making a sign chart.56

1. Since f(x) = x3 − 3x+ 2, then using the Power Rule,

f ′(x) = 3x2 − 3.

Then solving f ′(x) = 0 :

f ′(x) = 0

3x2 − 3 = 0

3(x2 − 1) = 0

3(x+ 1)(x− 1) = 0

x = 1

x = −1

This isn’t the only way to solve. You can do the following.

f ′(x) = 0

3x2 − 3 = 0

3x2 = 3

x2 = 1

x = ±1

WARNING!!! Be very careful if you do this. A common mistake is to forget x = −1 when57

doing it this way. That is, you just go from x2 = 1 to x = 1 and leave out the other value of58

x. I’ve seen this happen many times.59
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2. This gives the following number line:60

−1 1
61

3. Now choose one value from each interval. Easy values are x = −2, x = 0, and x = 2.

f ′(−2) = 3((−2)2)− 3

= 9

> 0

f ′(0) = 3(02)− 3

= −3

< 0

f ′(2) = 3(22)− 3

= 9

> 0.

This yields the following number line:62

−1 1

+ − +

63

So at x = −1, the graph changes from increasing to decreasing, and so there is a local maximum64

there. And at x = 1, the graph changes from decreasing to increasing, and so there is a local65

minimum there.66

Assessment Expectation: When asked to find local maxima and minima (plurals of maximum67

and minimum), ALWAYS include the y-values and write your answer as a point. Since f(−1) = 468

and f(1) = 0, you would say there is local maximum at (−1, 4) and a local minimum at (1, 0).69

Summary:70

If f ′(x) > 0 for some value of x, then the function
f(x) is increasing at that value of x.

If f ′(x) < 0 for some value of x, then the function
f(x) is decreasing at that value of x.

If f ′(x) = 0, there may be a local minimum, a lo-
cal maximum, or an inflection point (determined by
making a sign chart).

71
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Homework72

1. Consider the graph of f(x) = sin(x) on the interval [0, 2π]. By making a sign chart for f ′(x),73

find all local minima and maxima. Visually verify this by graphing on desmos.74
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Solutions75

1. Since f(x) = sin(x), then f ′(x) = cos(x).76

(a) To make a sign chart, we need to know where cos(x) = 0 on the interval [0, 2π]. We can77

look at the unit circle and see where the x-value is 0. This occurs when x = π/2 and78

x = 3π/2.79

(b) This gives the following number line:80

π

2
3π

2
81

(c) Looking at easy values in each interval, we choose x =
π

4
, π,

7π

4
. Then

f ′′(π/4) = cos(π/4)

= 1/
√

2

> 0

f ′′(π) = cos(π)

= −1

< 0

f ′′(7π/4) = cos(7π/4)

= 1/
√

2

> 0

This yields the following number line:82

π

2
3π

2

+ − +

83

Since f ′(x) goes from + to − at π/2, f(x) increases and then decreases. So there is a local84

maximum at (π/2, 1). Since f ′(x) goes from − to + at 3π/2, f(x) decreases and then increases.85

So there is a local maximum at (3π/2,−1).86
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4.2 The Geometry of Second Derivatives1

In our discussion of the geometry of the first derivative, we saw that given a function f(x), the2

graph of the function is increasing at points where f ′(x) > 0, and decreasing at points where3

f ′(x) < 0. But when f ′(x) = 0, there were three possibilities: a local minimum, a local maximum,4

or an inflection point. Now if you have a graph, you can just look at it and see which case applies.5

Here, we will learn another way how to figure this out using calculus.6

We will need the second derivative here, which is just the derivative of the derivative. Let’s look7

at a few examples.8

Example 19

Suppose f(x) = x4 − 3x2. Using the power rule, we get

f ′(x) = 4x3 − 6x.

What if we take the derivative again? We get

d

dx
f ′(x) =

d

dx
(4x3 − 6x)

= 12x2 − 6,

and write
f ′′(x) = 12x2 − 6.

Sometimes you will see the notation

d2

dx2
f(x) = 12x2 − 6,

although we won’t be using this notation – f ′′(x) is much easier to use.10

Example 211

Suppose f(x) = sin(x). Then f ′(x) = cos(x), and

f ′′(x) =
d

dx
cos(x)

= − sin(x).
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Example 312

So finding the second derivative is just a matter of taking the derivative twice in a row. But why13

would we want to do this? Let’s look at an example.14

y

x
−2 2

4

2

x f ′(x) Eqn. of tangent

−2 −4 y = −4x− 4

−1 −2 y = −2x− 1

0 0 y = 0

1 2 y = 2x− 1

2 4 y = 4x− 4

Figure 4.3: Graph of f(x) = x2 (left) with table of values of f ′(x) (right). For an interactive version
of this graph, visit desmos.com.

You can see several tangent lines graphed in Figure 4.3. In the table on the right, you can see15

several values of f ′(x). What do we notice? That the slopes of the tangent lines – the values of16

f ′(x) – are increasing as we go from left to right.17

So f ′(x) is a function which is increasing. Remember that when a function is increasing, its
derivative is positive. Since f ′′(x) is the derivative of f ′(x), this means that

d

dx
f ′(x) > 0,

f ′′(x) > 0.

Geometrically, we say that when f ′′(x) > 0, the function is concave up, meaning essentially, that18

the function “opens upward.” This can happen in three ways, shown in Figure 4.4.19

https://www.desmos.com/calculator/pfbfgjd6ri
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Figure 4.4: Graph of f(x) = x2 (left), f(x) = 2x (middle), and f(x) = 2−x (right).

There may be a local minimum involved, as with f(x) = x2 (left in Figure 4.4). But there may be20

no minimum at all. The function f(x) = 2x is always increasing and concave up (middle graph),21

but f(x) = 2−x is always decreasing and concave up (right graph). So you can see why the first22

derivative cannot tell us about concavity: a concave up graph could be increasing, decreasing, or23

both. That’s why we need the second derivative.24

Wherever f ′′(x) > 0, the graph of the
function is concave up.

25

When f ′′(x) < 0, we say that the function is concave down. We won’t repeat the previous analysis26

since it is very similar. Instead, we’ll jump to some examples.27

y
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−2

y
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−4

−2

y

x
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−4

−2

Figure 4.5: Graph of f(x) = −x2 (left), f(x) = −2x (middle), and f(x) = −2−x (right).

Wherever f ′′(x) < 0, the graph of the
function is concave down.

28
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Example 429

The graphs of most functions, though, are partly concave up, and partly concave down. We’ll look30

at such an example, f(x) =
1

x
, and apply what we just learned.31

y

x
−2 2

4

2

−2

−4

Figure 4.6: Graph of f(x) =
1

x

Note that f(x) is not defined when x = 0. Now let’s find f ′′(x). Remember, we don’t need the
quotient rule here because we can rewrite the function as f(x) = x−1.

f(x) = x−1

f ′(x) = −x−1−1

= −x−2

f ′′(x) = −(−2)x−2−1

= 2x−3

So f ′′(x) =
2

x3
. When x > 0, f ′′(x) > 0 since (+)(+)(+) = (+) on the denominator. Hence the32

graph is concave up on the interval (0,∞).33

But when x < 0, then f ′′(x) < 0 since (−)(−)(−) = (−) on the denominator. Thus the graph is34

concave down on the interval (−∞, 0).35

Remember that, in general, we use the first derivative, f ′(x), to determine where the function is36

increasing or decreasing. We now know that we use the second derivative, f ′′(x), to determine37

where the function is concave up and where it’s concave down.38
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Sometimes it gets confusing to remember what to use – f(x), f ′(x), or f ′′(x) – in a given problem.39

So here’s a summary – so important, it needs to be double-boxed!40

What... ...it’s used for

f(x) Finding y-values

f ′(x) Increasing/decreasing; minimum/maximum

f ′′(x) Concave up/down; inflection points

41

The only thing left to discuss is the case when f ′′(x) = 0. Like the case when f ′(x) = 0, there are42

four possibilities. These are shown in Figure 4.7.43

y

x
−2 2

4

2

−2

−4

f(x) = x4

y

x
−2 2

4

2

−2

−4

f(x) = −x4

y

x
−2 2

4

2

−2

−4

f(x) = x3

y

x
−2 2

4

2

−2

−4

f(x) = −x3

Figure 4.7: Possible behavior when f ′′(x) = 0.

But if we don’t have a graph, how can we figure out which is which? We can use a sign chart for44

f ′′(x).45

We’ll first look at the far left graph in Figure 4.7, f(x) = x4. To make a sign chart for f ′′(x), we
first calculate f ′′(x) when f(x) = x4.

f ′(x) = 4x3

f ′′(x) = 4 · 3x2

= 12x2.

1. If f ′′(x) = 12x2 = 0, then x = 0.46

2. This gives the following number line:47

0
48
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3. Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′′(−1) = 12(−1)2

= 12

> 0

f ′′(1) = 12(12)

= 12

> 0.

This yields the following number line:49

0

+ +

50

How do we interpret this number line? Here is an important definition.51

An inflection point is a point where a graph changes
concavity – in other words, it goes from being concave
up to concave down, or from concave down to concave
up.

52

In our example, the graph is concave up on (−∞, 0) (since f ′′(x) > 0 there), and is also53

concave up on (0,∞). Thus, the graph does not change concavity. Since it is concave up on54

both sides of 0, there is a local minimum at x = 0. We can see this by looking at the graph,55

of course, but a sign chart is necessary when you don’t have a graph.56

Let’s look at another example, this time f(x) = −x3.57

1. Since f(x) = −x3, then

f ′(x) = −3x2

f ′′(x) = −3 · 2x
= −6x.



Section 4.2 � The Geometry of Second Derivatives 83

2. This gives the following number line:58

0
59

3. Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′′(−1) = −6(−1)

= 6

> 0

f ′′(1) = −6(1)

= −6

< 0.

This yields the following number line:60

0

+ −

61

Notice that f(x) is concave up on (−∞, 0) and concave down on (0,∞). Since the graph changes62

concavity at x = 0, then this is an inflection point. Again, this is clear from the graph – but without63

a graph, you can still determine whether x = 0 is an inflection point or not using a sign graph.64

Example 565

The sign graphs above were fairly simple. Let’s look at a more involved example, using f(x) =66

x4 − 6x2.67

1. Since f(x) = x4 − 6x2, then

f ′(x) = 4x3 − 12x

f ′′(x) = 12x2 − 12.

Then

f ′′(x) = 0

12x2 − 12 = 0

12x2 = 12

x2 = 1

x = ±1

2. This gives the following number line:68

−1 1
69
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3. Now choose one value from each interval. Easy values are x = −2, x = 0, and x = 2.

f ′′(−2) = 12((−2)2)− 12

= 36

> 0

f ′′(0) = 12(02)− 12

= −12

< 0

f ′′(2) = 12(22)− 12

= 36

> 0.

This yields the following number line:70

−1 1

+ − +

71

So at x = −1, the graph changes from concave up to concave down, and at x = 1, the graph changes72

from concave down to concave up. So x = −1 and x = 1 are both inflection points.73

We can see this on the graph below. Keep in mind that we were able to determine this without the74

graph.75

y

x
−2 2

10

−10

Figure 4.8: Graph of f(x) = x4 − 6x2.
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Homework76

1. Let f(x) = x7 − 1

x
. Find f ′′(x).77

2. Let f(x) =
√
x+ cos(2x). Find f ′′(x).78

3. Let f(x) = sin2(x). Find f ′′(x).79

4. Fill in the blank with the best answer.80

(a) When f ′′(x) < 0, the graph of f(x) is .81

(b) We use a sign graph for f ′′(x) to determine points of .82

(c) An inflection point is a point on the graph where the changes.83

5. Let f(x) = −x4. Create a sign graph for f ′′(x). Follow the same steps as for the graphs in84

Figure 4.7.85

6. Let f(x) = −x4 + 24x2. Find all inflection points using a sign chart. (Hint: the “24” should86

make everything come out nicely.)87
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Solutions88

1.

f(x) = x7 − x−1

f ′(x) = 7x6 + x−2

f ′′(x) = 42x5 − 2x−3

2.

f(x) = x1/2 + cos(2x)

f ′(x) =
1

2
x−1/2 − 2 sin(2x) Chain rule : f(x) = cos(x), g(x) = 2x

f ′′(x) = −1

4
x−3/2 − 4 cos(2x) Chain rule : f(x) = sin(x), g(x) = 2x.

3.

f(x) = sin2(x)

f ′(x) = 2 sin(x) cos(x) Chain rule : f(x) = x2, g(x) = sin(x)

f ′′(x) = (2 sin(x))(− sin(x)) + (cos(x))(2 cos(x)) Product rule : f(x) = 2 sin(x), g(x) = cos(x)

= 2(cos2(x)− sin2(x))

4. (a) concave down.89

(b) inflection.90

(c) concavity.91

5. Let f(x) = −x4. To make a sign chart for f ′′(x) :

f ′(x) = −4x3

f ′′(x) = −4 · 3x2

= −12x2.

(a) If f ′′(x) = −12x2 = 0, then x = 0.92

(b) This gives the following number line:93

0
94

(c) Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′′(−1) = −12(−1)2

= −12

< 0

f ′′(1) = −12(12)

= −12

< 0.

This yields the following number line:95
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0

− −

96

Since the concavity does not change, there is no inflection point. Since the graph stays concave97

down, there is a local maximum at x = 0.98

π

2
3π

2
99

Looking at easy values in each interval, we choose x =
π

4
, π,

7π

4
. Then

f ′′(π/4) = − cos(π/4)

= −1/
√

2

< 0

f ′′(π) = − cos(π)

= 1

> 0

f ′′(7π/4) = − cos(7π/4)

= −1/
√

2

< 0

This yields the following number line:100

π

2
3π

2

− + −

101

Since concavity changes at x =
π

2
and x =

3π

2
, these must be inflection points.102

6. Let f(x) = −x4 + 24x2.103

(a) Since f(x) = −x4 + 24x2, then

f ′(x) = −4x3 + 48x

f ′′(x) = −12x2 + 48.

Then

f ′′(x) = 0

−12x2 + 48 = 0

−12x2 = −48

x2 = 4

x = ±2
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(b) This gives the following number line:104

−2 2
105

(c) Now choose one value from each interval. Easy values are x = −3, x = 0, and x = 3.

f ′′(−3) = −12((−3)2) + 48

= −60

< 0

f ′′(0) = −12(02) + 48

= 48

> 0

f ′′(3) = −12(32) + 48

= −60

< 0.

This yields the following number line:106

−2 2

− + −

107

So at x = −2, the graph changes from concave down to concave up, and at x = 2, the graph108

changes from concave up to concave down. So x = −2 and x = 2 are both inflection points.109
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Exponentials and Logarithms2
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5.1 Exponential Functions and e3

To begin, review Exponential Functions in the pdf linked to from the website, on pp. 417–419.4

There is a particular choice of base b which we use a lot in calculus – the base e. So let’s look at5

why this particular number is important. You want to think of e like π – it is an irrational number6

which cannot be represented by a fraction. The more you work problems with e, the more you’ll7

get used to it.8

You’ll need to go to this desmos page on Exponential Derivatives, since the notes here will be9

referring to the graphs there. You’ll see a graph (in red) of y = bx, with a slider you can move to10

change the base b. Then you also see a graph (in blue) of f ′(x).11

Right now, we don’t have a formula for f ′(x). Remember, to use the Power Rule, the x has to be12

in the base, but with y = bx, the x is in the exponent. Moreover, bx cannot be written as product13

or quotient, so we can’t apply these rules, and we can’t use the Chain Rule either.14

But you should notice one thing. The derivative of an exponential function looks like another15

exponential function. Why should this be?16

To help you see this, please go to the desmos page Exponential Tangents. Here, you see the graph17

of y = 2x. As you move the slider for a, you’ll see the tangent line at a along with its slope. (Don’t18

worry about the complicated looking second formula; we won’t be needing this.)19

So let’s take a look at these graphs. As we look at the graph of y = 2x as we go from −5 to 5, you20

notice that it starts off very small, gradually increases, and then begins to increasing more rapidly21

the further right you get. But this is the same behavior we notice with the slopes of the tangent22

lines. The slopes (in blue) start off small, gradually increase, but increase even faster the further23

we go to the right.24

Now a graphical observation is not a mathematical proof that the derivative of an exponential25

function is another exponential, but it does turn out to be true. These desmos graphs are just26

meant to show why it makes graphical sense. We will not need a formal proof.27

So if the derivative of f(x) = 2x is another exponential function, just what exponential function is28

it? We won’t completely answer this question right now, but at least we’ll get a good start on it.29

Now navigate back to Exponential Derivatives. Remember, the red graph is y = bx, and the30

derivative is the blue graph. Now starting at the left of the slider for b, you will notice that the31

derivative graph is below the exponential graph. As you move the slider to the right, you should32

see that the derivative graph moves up closer to the exponential graph. As b approaches about 2.7,33

you should notice that the derivative graph crosses over and is now above the exponential graph.34

What is happening around b = 2.7? There is exactly one value of b where the derivative graph35

is exactly on top of the exponential graph. For lesser values, the derivative graph is below the36

exponential graph, and for greater values, the derivative graph is above the exponential graph. The37

value of b where the two graphs are the same is called e, where e ≈ 2.71828. The number e is an38

irrational number; there is no simple formula for it, just like π.39

In terms of calculus, we can summarize these observations as follows. Note the important double40

box!41

https://www.desmos.com/calculator/fq4xy7obpe
https://www.desmos.com/calculator/5z4b8emtup
https://www.desmos.com/calculator/fq4xy7obpe
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d

dx
ex = ex

42

This means that the derivative graph of ex is exactly the same graph as ex. Don’t forget this formula!43

Remember, we need this formula because we can’t use the Power Rule – the x is not in the base,44

it’s in the exponent.45

Example 146

Let h(x) = 4e0.5x. Find h′(x).47

Our formula applies only if the exponent of e is just x. Since the exponent is different here, we need
the Chain Rule. We will use

f(x) = 4ex, f ′(x) = 4ex,

g(x) = 0.5x, g′(x) = 0.5

h(x) = 4e0.5x

h′(x) = 4f ′(g(x))g′(x)

= 4eg(x)(0.5)

= 2e0.5x

Example 248

You make a purchase of $1000 on your credit, which has an APR of 20%. After one month, how49

much interest will you have to pay on the $1000 if you do not pay off your card in full? Assume a50

month has 30 days.51

Let’s review the compound interest formula for daily compounded interest.

Balance = Principal

(
1 +

Interest Rate

365

)Days

Plugging in, we get

Balance = $1000

(
1 +

0.20

365

)30
≈ $1016.57.

So you are paying $16.57 in interest.52

Exponential functions can be used to approximate interest compounded over short times, like days.
The formula is

Balance = Principal× eInterest Rate×Years

Here, we use 1/12 for Years since interest is accruing for just one month.

Balance = $1000× e0.20×1/12 ≈ $1016.81.

With this formula, you are paying $16.81 in interest, which is off by only a few cents.53
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Example 354

One application of exponential functions is bacterial growth. This is a good model for the initial55

growth spurt when a culture of bacteria is started in a Petri dish. After a while, though, the Petri56

dish begins to fill up and the growth rate slows down. To model the slowing part down as well,57

you’ll need to wait until Calculus II.58

You’ll need to get used to using the variable t for exponential growth, since t is the variable most
used for time. So suppose a population of bacteria is modeled by

P (t) = 5000e0.01t,

where P is the population at time t, which is given in hours. Let’s look at a few questions.59

1. What is the initial population?60

2. What is the population after 10 hours?61

3. At what rate is the population increasing at 10 hours?62

Solutions:63

1. The term initial population always refers to the time t = 0. P (0) = 5000e0.01(0) = 5000, so64

the initial population is 5000 bacteria.65

2. After 10 hours, the population is P (10) = 5000e0.01(10) ≈ 5525.85. (You should have a key on66

your calculator which calculates ex.) Since you can’t have a fractional number of bacteria,67

we usually round up and say the population is 5526.68

3. Since we’re asking for a rate, we need the derivative – just like the velocity is the rate of
change of the displacement. We will use the Chain Rule again. We will use the variable t for
time.

f(t) = 5000et, f ′(t) = 5000et,

g(t) = 0.01t, g′(t) = 0.01.

P (t) = 5000e0.01t

P ′(t) = 5000f ′(g(t))g′(t)

= 5000eg(t)(0.01)

= 50e0.01t

Now use your calculator to see that P ′(10) ≈ 55.2585. So the population increase at 10 hours69

is approximately 56 bacteria per hour.70
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Example 471

When calculating derivatives involving ex, you will almost always need the Chain Rule. Suppose72

h(x) = esin(x). Find h′(x).73

To do this, we let
f(x) = ex, f ′(x) = ex,

g(x) = sin(x), g′(x) = cos(x)

Then

h(x) = esin(x)

h′(x) = f ′(g(x))g′(x)

= eg(x)(cos(x))

= cos(x)esin(x)

Example 574

Suppose h(x) = ex
2
. Find h′(x). (Note: ex

2
means e(x

2), so you cannot simplify using rules of75

exponents first. This is just something you have to know; just like the square root sign means a
1

2
76

power.)77

To do this, we let
f(x) = ex, f ′(x) = ex,

g(x) = x2, g′(x) = 2x.

Then

h(x) = ex
2

h′(x) = f ′(g(x))g′(x)

= eg(x)(2x)

= 2xex
2
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Homework78

1. Suppose f(x) = 2xex. Find f ′(x).79

2. Let f(x) =
ex

ex + 1
.80

3. Let h(x) = ex sin(x). Find h′(x).81

4. Let h(x) = esin(x)+cos(x). Find h′(x).82

5. Suppose g(x) = e
√
x.83

6. Suppose you make a purchase of $250 on a credit card with an APR of %18. Using an84

exponential function, approximate how much interest will have accrued in one month.85

7. Suppose a population of bacteria is modeled by

P (t) = 4000e0.02t,

where P is the population at time t, which is given in hours.86

(a) What is the initial population?87

(b) What is the population after 5 hours?88

(c) At what rate is the population increasing at 5 hours?89
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Solutions:90

1. We need the Product Rule here. We’ll use

f(x) = 2x, f ′(x) = 2,

g(x) = ex, g′(x) = ex.

Remember the f(x) in the Product Rule is not the same as the original f(x). Then

d

dx
2xex = f(x)g′(x) + g(x)f ′(x)

= 2xex + ex(2)

= 2xex + 2ex

= 2ex(x+ 1).

It is not necessary to factor out the 2ex, but that is likely the answer a book or software91

would give you.92

2. We need the Quotient Rule here. We’ll use

f(x) = ex, f ′(x) = ex,

g(x) = ex + 1, g′(x) = ex.

Also, don’t forget that

ex · ex = ex+x = e2x.

Then

d

dx

ex

ex + 1
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

=
(ex + 1)ex − ex · ex

(ex + 1)2

=
e2x + ex − e2x

(ex + 1)2

=
ex

(ex + 1)2

3. We use the Product Rule here.

f(x) = ex, f ′(x) = ex,

g(x) = sin(x), g′(x) = cos(x).

h′(x) = f(x)g′(x) + g(x)f ′(x)

= ex(cos(x)) + sin(x)(ex)

= ex(cos(x) + sin(x))
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4. We use the Chain Rule here.93

f(x) = ex, f ′(x) = ex,

g(x) = sin(x) + cos(x), g′(x) = cos(x)− sin(x).

h′(x) = f ′(g(x))g′(x)

= eg(x)(cos(x)− sin(x))

= (cos(x)− sin(x))esin(x)+cos(x)

5. We use the Chain Rule here.
f(x) = ex, f ′(x) = ex,

g(x) =
√
x, g′(x) =

1

2
√
x
.

h′(x) = f ′(g(x))g′(x)

= eg(x) · 1

2
√
x

=
1

2
√
x
e
√
x

6. We use the formula
Balance = Principal× eInterest Rate×Years

and substitute in the given values.

Balance = $250× e0.18×1/12 ≈ $253.78.

So you’d pay
$253.78− $250 = $3.78

in interest after one month.94

7. (a) The term initial population refers to the time t = 0. P (0) = 4000e0.02(0) = 4000, so the95

initial population is 4000 bacteria.96

(b) After 5 hours, the population is P (5) = 4000e0.02(5) ≈ 4420.68. Since you can’t have a97

fractional number of bacteria, we usually round up and say the population is 4421.98

(c) Since we’re asking for a rate, we need the derivative – just like the velocity is the rate
of change of the displacement. We will use the Chain Rule again.

f(t) = 4000et, f ′(t) = 4000et,

g(t) = 0.02t, g′(t) = 0.02.

P (t) = 4000e0.02t

P ′(t) = 4000f ′(g(t))g′(t)

= 4000eg(t)(0.02)

= 80e0.02t

Now use your calculator to see that P ′(5) ≈ 88.4137. So the population increase at 599

hours is approximately 89 bacteria per hour.100
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5.2 The Natural Logarithm1

It turns out that because the exponential function is so important in calculus, so is its inverse,2

called the natural logarithm. Let’s first review some concepts from precalculus.3

Example 14

A function is said to pass the horizontal line test if any horizontal line passes through no more5

than one point on the graph. For example, y = x3 passes this test because any horizontal line6

passes through just one point (left of Figure 5.1). But y = x2 fails the horizontal line test because7

there are horizontal lines passing through two points on the graph (right of Figure 1).8

y

x
−1 1

1

−1

y

x
−1 1

1

−1

Figure 5.1: Graph of y = x3 passes the horizontal line test (left); graph of y = x2 fails the horizontal
line test (right).

When a function passes the horizontal line test, it is said to be one-to-one, meaning one y-value9

can correspond to only one x-value. Such functions are also said to be invertible.10
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Let’s start with y = x2 again (red in Figure 5.2). To get the graph of an inverse function, you11

reflect the graph along the line y = x (green); this is why we switch x and y to solve for the inverse12

function. The reflected graph is shown in blue. So if a horizontal line goes through two points on13

a graph (the orange line intersecting the graph of y = x2), when you reflect it a vertical line will14

pass through two points of the inverse graph (the orange line passing through two points on the15

reflected graph). But a function must pass the vertical line test – one input can not have more than16

one output. So y = x2 is not invertible because when you reflect the graph, it fails the vertical line17

test.18

y

x
−2 2

4

2

−2

Figure 5.2: Graph of y = x2 (red) and its reflection (blue) along y = x.
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In order to create a function which is invertible, it is sometimes necessary to restrict the domain.19

As you can see in Figure 5.3, if we restrict the domain to [0,∞), then the graph of y = x2 does20

pass the horizontal line test, and so we can take its inverse.21

y

x
−2 2

4

2

−2

Figure 5.3: Graph of y = x2 with restricted domain (red) and its reflection (blue) along y = x.

This is the geometry of inverse functions. What about the algebra of inverse functions? If you have
an equation of an invertible function, you just switch x and y (which is the algebraic way to reflect
along the line y = x) and solve for y. Remember that because we restricted the domain, both x
and y are positive, so there is no problem taking square roots.

y = x2

x = y2 switch x and y
√
x = y take square roots

y =
√
x

This means that the function y =
√
x is the inverse function of y = x2 (with restricted domain).22

This example is a review of how to find an inverse function. If you feel like you need to review a23

bit more, see Section 5.2 on p. 378 of the precalculus text on the website.24
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The Natural Logarithm25

Now let’s look at taking the inverse function of y = ex. Note that y = ex is one-to-one, and so we26

don’t need to worry about restricting the domain.27

y

x
−2 2−4 4 6

4

2

−2

−4

6

Figure 5.4: Graph of y = ex (red) and its reflection (blue) along y = x.

Graphically, reflecting y = ex along y = x isn’t difficult. It’s the algebra which is a bit tricky.28

Switching x and y gives x = ey, but the problem is that there is no way to solve for y using algebra29

that we already know.30

The first step is giving a name to this inverse function – it’s called the natural logarithm, and the31

notation is y = lnx. There is no formula for lnx, so any properties of the natural logarithm have32

to be deduced from properties of exponential functions.33

Since y = ex and y = lnx are inverse functions, then34

elnx = x, ln(ex) = x.

35

This is just like saying that for y = x2 and y =
√
x, whenever x ≥ 0, we have

(
√
x)2 = x,

√
x2 = x.
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What else can we say about the natural logarithm? Let’s figure out a useful property of logarithms.36

If a, b > 0, what can we say about ln(ab)? Put c = ln(ab) and follow along.37

ln(ab) = c

eln(ab) = ec substitute into ex

ab = ex inverse function property

eln a · eln b = ec inverse function property

eln a+ln b = ec rules of exponents

ln a+ ln b = c ex is one-to-one

ln(ab) = ln a+ ln b.

The important point here is that we used a rule of exponents to get a rule of logarithms by using38

the fact that exponential functions and logarithms are inverses of each other.39

We won’t go through deriving all the properties of natural logarithms, but instead summarize them40

below.41

This property is valid when...

eln a = a a > 0

ln(ea) = a any a

ln(ab) = ln a+ ln b a, b > 0

ln
(a
b

)
= ln a− ln b a, b > 0

ln(am) = m ln a a > 0, any m

42

We remark that ln a is sometimes called the logarithm to the base e of a, and is written43

ln a = loge a. We will look at other bases later; for now, our focus is on the natural logarithm.44
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Before going further, let’s do a few examples to review these rules.45

1. Find ln 1.46

Method 1: We know that e0 = 1, since any number raised to the 0 power is equal to 1. Since47

ln(ea) = a, then ln(e0) = 0.48

Method 2: We know that (0, 1) is on the graph of every exponential function. Reflecting over49

the line y = x, this means that (1, 0) is on the graph of every logarithmic function, meaning50

that ln 1 = 0. See Figure 5.4.51

2. Find ln

(
1

e3

)
.52

Method 1: Since ln
(a
b

)
= ln a− ln b, we know (using the previous result) that

ln

(
1

e3

)
= ln 1− ln(e3)

= 0− ln(e3)

= − ln(e3).

But since ln(ea) = a, we know that ln(e3) = 3. Thus,

ln

(
1

e3

)
= −3.

Method 2: We can write
1

e3
= e−3 using negative exponents. Thus,

ln

(
1

e3

)
= ln(e−3)

= −3.
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Derivative of lnx.53

How can we find the derivative of lnx? Using the limit definition is messy – instead we’ll use the54

fact that
d

dx
ex = ex and use the geometry of inverse functions.55

y

x
−2 2−4 4 6

4

2

−2

−4

6

m

1/m

(a, ln a)

(ln a, a)

Red: y = ex

Blue: y = lnx

Green: y = x

Orange: Tangent lines

Figure 5.5: Graph of y = ex (red) and its reflection (blue) along y = x.

It looks like there is a lot going on in Figure 5.5, so let’s look it one piece at a time. We’ll start56

with x = a, so that (a, ln a) is on the graph of y = lnx. You can also see the tangent line at this57

point.58

Now let’s reflect across the line y = x. Algebraically, this amounts to switching x and y values, so59

now the point (ln a, a) is on the graph of y = ex. The tangent line here is also drawn.60

What happens when we reflect tangent lines? Suppose that you start with a line with slope m
(such as the tangent to y = lnx). Then

m =
rise

run
=

change in y

change in x
.

Switching x and y (that is, reflecting the line) gives

change in x

change in y
=

run

rise
=

1

m
.

In other words, when you reflect a line with slope m over y = x, the reflected line has the reciprocal61

slope,
1

m
. (Don’t confuse this with perpendicular lines, whose slopes are negative reciprocals. There62

is no negative sign here.)63
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Up to this point, we’ve just studied the geometry of Figure 5.5. Now it’s time to use the fact that
d

dx
ex = ex. The point (ln a, a) is on the graph of y = ex. To find the slope of the tangent line,

we plug x = ln a into the derivative of ex, which is just ex. Therefore, using a property of inverse
functions, the slope of the tangent line to y = ex is

eln a = a.

Remember that eln a is the slope of the line tangent to (ln a, a) on the graph of y = ex. Referring
back to Figure 5.5, this means that

1

m
= a,

so that

m =
1

a
.

So the slope of the tangent line to y = lnx at x = a is just
1

a
. But the slope of the tangent line is64

just the derivative, so we have shown that65

d

dx
lnx =

1

x

66

Seems like a lot of work to find a derivative! Finding the inverse function of y = x2 was easy67

because when we switched x and y to get x = y2, it was easy to solve for y. But for the inverse68

function of y = ex, there is no way to solve x = ey for y. So we needed to rely heavily on the69

geometry of inverse functions in order to find the derivative of y = lnx.70

Example 271

Suppose h(x) = ln(x3). Find h′(x). We can use the Chain Rule here, with

f(x) = ln(x), f ′(x) =
1

x
,

g(x) = x3, g′(x) = 3x2.

Then

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)
· 3x2

=
1

x3
· 3x2

=
3

x



Section 5.2 � The Natural Logarithm 105

It turns out that there is another way to solve this problem. Using a rule of logarithms, we can
write

h(x) = 3 ln(x).

Then we just use the derivative of the logarithm to get h′(x) =
3

x
. This method is simpler, but it72

does require understanding the rules of logarithms.73
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Example 374

Suppose h(x) = ln(xex). Find h′(x). Again, let’s try the Chain Rule first, with

f(x) = ln(x), f ′(x) =
1

x
,

g(x) = xex, g′(x) = xex + ex,

where g′(x) was found using the Product Rule.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)
· (xex + ex)

=
1

xex
· (xex + ex)

=
xex

xex
+

ex

xex

= 1 +
1

x

Now we’ll use the rules of logarithms to find a simpler way. Using two of the rules of logarithms,
we can write

h(x) = ln(xex)

= lnx+ ln(ex)

= lnx+ x

h′(x) =
1

x
+ 1.

It is important to note that simplifying using rules of logarithms is not always possible. But when75

you can apply the rules, very often the process of taking the derivative is much simpler.76
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Homework77

1. Simplify ln(e6).78

2. If a = eb, then b = .79

3. Explain, in your own words, why, when you reflect a given line across y = x, the slope of the80

reflected line is the reciprocal of the slope of the given line.81

4. Find the derivative of h(x) = ln

(
ex

x

)
by (1) using the Chain Rule, (2) using rules of loga-82

rithms first to simplify.83

5. If h(x) = ln(ln(x)), find h′(x).84

6. Find the equation of the tangent line to y = lnx at x = 3. Check that your answer makes85

sense numerically by looking at Figure 5.5.86

7. We see from the graph that y = lnx is increasing. Show this using calculus. Hint: How do87

you know that the graph of a function is increasing?88

8. We see from the graph that y = lnx is concave down. Show this using calculus. Hint: How89

do you know that the graph of a function is concave down?90
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Solutions91

1. 6, since exponential and logarithmic functions are inverses of each other.92

2. ln a, since exponential and logarithmic functions are inverses of each other. We often describe93

this by saying that “a logarithm is an exponent.”94

3. Answers will be different for everyone.95

4. Suppose h(x) = ln

(
ex

x

)
. First, we’ll use the chain rule (g′(x) was found using the Quotient

Rule):

f(x) = ln(x), f ′(x) =
1

x

g(x) =
ex

x
, g′(x) =

xex − ex

x2
.

Then

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)

(
xex − ex

x2

)
=

x

ex

(
ex

x
− ex

x2

)
=

x

ex
· e

x

x
− x

ex
· e

x

x2

= 1− 1

x
.

Next, we’ll use rules of logarithms to simplify first.

h(x) = ln

(
ex

x

)
= ln(ex)− lnx

= x− lnx

h′(x) = 1− 1

x
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5. Let h(x) = ln(lnx). We use the Chain Rule with

f(x) = ln(x), f ′(x) =
1

x
,

g(x) = ln(x), g′(x) =
1

x
.

Then

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x)
· 1

x

=
1

x lnx
.

6. Let f(x) = lnx. Then f ′(x) =
1

x
, so f ′(3) =

1

3
, which is the slope m of the tangent line. The

point (x1, y1) = (3, ln 3) is also on the tangent line, so we have enough information to find an
equation.

y − y1 = m(x− x1)

y − ln 3 =
1

3
(x− 3)

=
1

3
x− 1

y =
1

3
x− 1 + ln 3

≈ 1

3
x+ 0.1

Looking at Figure 5.5, this make sense. You can see that
rise

run
is about

1

3
, and the y-intercept96

is just slightly above the origin.97

7. Let f(x) = lnx. Then f ′(x) =
1

x
. But the domain of f(x) is all numbers x > 0. Since x > 0,98

then
1

x
> 0 as well, meaning that the function is always increasing.99

8. Continuing from the previous problem,

f ′(x) =
1

x
= x−1

f ′′(x) = −1 · x−2

= − 1

x2
.

Since x2 is always positive, then f ′′(x) is always negative. This means that the function is100

concave down.101



110 Chapter 5 � Exponentials and Logarithms



111

Chapter 61

Continuity2



112 Chapter 6 � Continuity

6.1 Limits and Continuity3

Up to this point, we have used limits to help us define derivatives. The reason we needed the idea
of a limit is that we looked at the slopes of secant lines, such as

m =
f(x+ h)− f(x)

h
.

We wanted to see what happens as h → 0, but we can’t just plug in h = 0. Or else we’d get
0

0
,

which is undefined. So we wrote

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Limits have many other uses in mathematics and calculus. We’ll look at three important con-4

cepts, illustrated in Figure 6.1. The terms “essential discontinuity,” “removable discontinuity,” and5

“continuity” will be explained as we study them in more detail.6

y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

Figure 6.1: Graph of a function g(x) with an essential discontinuity (left), removable discontinuity
(middle), and a continuous graph (right).
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Example 17

We first look at a function f(x), where x is the number of ounces your letter weighs and f(x) is8

how much is costs to send your letter. The graph is shown in Figure 6.2. If you mail a first class9

letter, you pay $0.60 for the first ounce (up to exactly one ounce), and $0.24 for each part of an10

ounce after that.11

y (dollars)

x (ounces)
1 2 3 4 5 6

1.20

0.60

2.40

Figure 6.2: Graph of 2022 postal rates.

Notice the jumps. If your letter is exactly one ounce, you pay $0.60 to mail it. But if it’s the12

slightest bit over, you pay $0.84. There is no letter which will ever cost any other price between13

$0.60 and $0.84.14

How do we describe this using limits? We will introduce the concepts of left-handed limits and15

right-handed limits.16
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In Figure 6.3, we have zoomed in on a part of the graph near x = 1. Notice there is a thin strip17

blocking out the part of the graph right at x = 1. As we saw in calculating derivatives, you can’t18

look at h = 0 right away, since it’s undefined. So in looking at limits, we look around an x-value19

and see what’s happening.20

y (dollars)

x (ounces)
1 2 3

1.20

0.60

Figure 6.3: Graph of 2022 postal rates (closeup).

Start by looking at what happens when x moves to 1 coming from the left. It looks like at x = 1,
the value of the function is 0.60. But if we start a little bit to the right of x = 1 and move left,
it looks like the value of the function is 0.84. (Of course it can’t be both, since one input, x = 1,
cannot have two outputs.) In the language of limits, we say

lim
x→1−

f(x) = 0.60, lim
x→1+

f(x) = 0.84.

We read these as “the limit as x approaches 1 from the left of f(x) is 0.60,” and “the limit as x21

approaches 1 from the right of f(x) is 0.84.” In general, the “−” as a superscript means looking22

from the left, and the “+” means looking from the right.23

Now we know that f(1) = 0.60 from Figure 6.2. So

lim
x→1−

f(x) = 0.60, f(1) = 0.60, lim
x→1+

f(x) = 0.84.

This is how, using the language of limits, we can say that there is a jump in a graph.24



Section 6.1 � Limits and Continuity 115

Example 225

Let’s take a look at another example with a jump in the graph.26

y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

Figure 6.4: Graph of a function g(x) with a removable discontinuity.

What is happening at x = 2? Looking at the right graph in Figure 6.4, we can see that

lim
x→2−

g(x) = 1 = lim
x→2+

g(x).

When both left-hand and right-hand limits are the same, we can simply say

lim
x→2

g(x) = 1.

But g(2) = 3 6= 1, so there is a discontinuity at x = 2. We say this type of discontinuity is a27

removable discontinuity since we can redefine g(x) at 2 to make it continuous at x = 2. If we28

make g(2) = 1, the function would be continuous at x = 2.29

Note the difference at x = 1 in Figure 6.3. It doesn’t matter how we define f(1), there must be a30

jump. In this case, we say that x = 1 is an essential discontinuity.31
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Example 332

Let’s take a look an example without a jump. In this case, h(x) = x+ 1.33

y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

5

Figure 6.5: Graph of a function h(x) without a jump.

Let’s look at what is happening at x = 3. Looking at the right graph in Figure 6.5, we can see that

lim
x→3−

h(x) = 4 = lim
x→3+

h(x).

Since both left-hand and right-hand limits are the same, we can say

lim
x→3

h(x) = 4.

But h(3) = 4 as well, so we can say that h(x) is continuous at x = 3.34

If a function is continuous at every point in its domain, we say the function is continuous. If we35

are only looking at a single point, we just say that a function is continuous at a particular point,36

as in this example.37

Here is a summary of the new terminology we encountered in the first three examples.38

“ lim
x→a−

f(x)” means the limit of f(x) as x approaches a from the left.

“ lim
x→a+

f(x)” means the limit of f(x) as x approaches a from the right.

Let f(x) be given and let a be in its domain.

If... then...

limx→a− f(x) 6= limx→a+ f(x) has an essential discontinuity at a

limx→a− f(x) = limx→a+ 6= f(a) f(x) has a removable discontinuity at a

limx→a− f(x) = limx→a+ = f(a) f(x) is continuous at a

39

It is important to note that the limits mentioned in this chart do not always exist for every function.40

We will look at such examples later; for now, we’ll stick to functions where these limits exist.41



Section 6.1 � Limits and Continuity 117

Example 442

Most of the examples we’ll come across will be continuous. Proving that a function is continuous43

can often involve a lot of work with limits. To avoid all these proofs, we’ll summarize the main44

points below.45

The following functions are continuous wherever they are defined:

1. Polynomials, such as f(x) = 3x5 − 4x2 + 7,

2. Roots/radicals, such as f(x) = x2/3,

3. Rational functions, such as f(x) =
3x2 − 1

x+ 4
,

4. The basic trigonometric functions: sin(x), cos(x), and tan(x),

5. f(x) = ex,

6. f(x) = lnx.

If f(x) and g(x) are continuous functions, the following are also continuous:

7. c · f(x), where c is a constant,

8. f(x) + g(x),

9. f(x)− g(x),

10.
f(x)

g(x)
, as long as g(x) 6= 0,

11. (f ◦ g)(x).

46

What this means is that it’s very easy to create new continuous functions from the basic ones. To47

see an example, let’s show that h(x) = sin(x2 + 1) is a continuous function. First, we write h(x) as48

a function composition. With f(x) = sin(x) and g(x) = x2 +1, we have h(x) = (f ◦g)(x). But f(x)49

is continuous by (4) above and g(x) is continuous by (1) above. Then by (11), their composition is50

continuous, which is just h(x).51
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Example 552

Let’s look now at f(x) =
1

x
. Note that here, the domain is all real numbers except x = 0. By (3)53

above, we know that f(x) is a continuous function. But how does that make sense? Doesn’t the54

graph make a huge jump across x = 0?55

y

x
−4 4

−4

4

y

x
1 4

4

Figure 6.6: Graph of f(x) =
1

x
(left), closeup at x =

1

2
(right).

The important concept here is that you can only talk about continuity where a function is defined.

Look at the right graph in Figure 7.1. Is f(x) continuous at x =
1

2
? You should convince yourself

that

lim
x→1/2−

f(x) = lim
x→1/2+

f(x)

= f

(
1

2

)
= 2.

This means precisely that f(x) is continuous at
1

2
. We can draw a similar thin vertical strip and56

make similar observations at any point on the graph.57

But we cannot draw a vertical strip at x = 0, since f(0) is undefined. This seems like we’re being58

a bit picky, but this concept is very important to understanding continuity. It will be especially59

important when we explore asymptotes of functions.60
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Example 661

Consider the graph of f(x) shown In Figure 6.7. Describe the behavior at x = 0, x = 1, and x = 262

using what we have just learned.63

y

x
−1 3

3

Figure 6.7: Describing continuity of f(x).

At x = 0, we have lim
x→0−

f(x) = 0 and also lim
x→0+

f(x) = 0. Since f(0) = 0 as well, f(x) is continuous64

at x = 0.65

At x = 1, we have lim
x→1−

f(x) = 1 and lim
x→1+

f(x) = 2. Since these limits are not equal, there is an66

essential discontinuity at x = 1.67

At x = 2, we see that lim
x→2−

f(x) = 2 and also lim
x→2+

f(x) = 2 as well. But f(2) = 3, which is not68

equal to 2. Therefore, there is a removable discontinuity at x = 2.69
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Summary70

The limit of f(x) as x
approaches a from the left:

lim
x→a−

f(x)

y

x
a

Used for:

1. Determining continuity,

2. Describing discontinuities,

The limit of f(x) as x
approaches a from the right:

lim
x→a+

f(x)

y

x
a

Used for:

1. Determining continuity,

2. Describing discontinuities,

The limit of f(x) as x
approaches a : lim

x→a
f(x).

Only exists if

lim
x→a−

f(x) = lim
x→a+

f(x).

y

x

y

x
a

Used for:

1. Determining continuity,

2. Describing discontinuities.

71
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Homework72

1. Suppose a function f(x) is defined for all real numbers. You know that

lim
x→2−

f(x) = 3, lim
x→2+

f(x) = 4.

Which of the following are possible? Circle all that apply.73

(a) f(x) is continuous at x = 2.74

(b) f(x) has an essential discontinuity at x = 2.75

(c) f(x) has a removable discontinuity at x = 2.76

2. Suppose a function f(x) is defined for all real numbers. You know that

lim
x→−1+

f(x) = f(−1).

Which of the following are possible? Circle all that apply.77

(a) f(x) is continuous at x = −1.78

(b) f(x) has an essential discontinuity at x = −1.79

(c) f(x) has a removable discontinuity at x = −1.80

3. On the grid below, sketch a graph of a function f(x) which has the following properties. Note:81

many answers are possible; there is not just one correct answer.82

(a) There is a removable discontinuity at x = 1.83

(b) There is an essential discontinuity at x = 3.84

(c) lim
x→−1−

f(x) = −2.85

(d) lim
x→3+

f(x) = 2.86

(e) f(−2) = −1.87

(f) f(x) is continuous at x = −2.88

89
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4. Suppose f(x) =
1

x2 − 1
. The graph is shown below.90

y

x
−4 4

−4

4

Figure 6.8: Graph of f(x) =
1

x2 − 1
.

You are discussing with your friend whether or not this is a continuous function. She says,91

“No way! Look at how the function jumps around! It looks like there are vertical asymptotes.92

This function can’t be continuous!”93

What is your repsonse to your friend?94
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5. The function f(x) = dxe is called the ceiling function. It is defined so that f(x) is the smallest
integer that is greater than or equal to x. Thus,

d4e = 4, d4.5e = 5, d−2e = −2, d−1.5e = −1.

Part of its graph is shown below.95

y

x
3−3

3

−3

Figure 6.9: Partial graph of the ceiling function.

(a) What is f(−4.8)? f(4.8)?96

(b) Describe the behavior of the graph at x = 0 using the notations and terminology of this97

section.98

(c) Choose the best answer. At x = 0.5, the function:99

i. Is continuous.100

ii. Has an essential discontinuity.101

iii. Has a removable discontinuity.102
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6. Suppose you are given the following graph, with a thin vertical strip covering x = a. Which103

of the following are possible? Circle all that apply.104

(a) f(x) is continuous at x = a.105

(b) f(x) has an essential discontinuity at x = a.106

(c) f(x) has a removable discontinuity at x = a.107

y

x
a

Figure 6.10: Graph of a function f(x).
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7. Sometimes it makes more than one formula to define a function. You might have seen the
absolute value function, f(x) = |x|, defined in a piecewise way:

f(x) =

{
x, x ≥ 0,

−x, x < 0.

Consider the following piecewise-defined function. Assume b is a constant.108

g(x) =

{
x+ 1, x ≤ 1,

b− x, x > 1.

What must be the value of b so that g(x) is a continuous function? Sketch a graph of this109

function on the interval [−4, 4] below.110

y

x

111
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Solutions112

1. (b).113

2. (a) and (b).114

3. Many other answers are possible. This is just one way to satisfy all the given properties.115

y

x
−4 4

−4

4

116

4. You would tell your friend to be very careful with the definition of continuity! Continuity can117

only be discussed where a function is defined. Since the function is not defined at x = −1, 1,118

these values cannot detract from the continuity of the function. Wherever the function is119

defined, it is continuous. (See Example 5 for another example.)120

5. (a) f(−4.8) = −4, f(4.8) = 5.121

(b)
lim
x→0−

f(x) = 0, lim
x→0+

f(x) = 1.

Therefore, there is an essential discontinuity at x = 0.122

(c) (i).123

6. (a), (c).124
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7. g(x) has pieces which are lines (which are polynomials), so we have to check that they “meet
up” at x = 1. Keeping in mind that b is a constant, we have

lim
x→1−

g(x) = lim
x→1−

(x+ 1) = 2

and
lim
x→1+

g(x) = lim
x→1+

(b− x) = b− 1.

To be continuous at x = 1, these left-hand and right-hand limits must be equal, and so

2 = b− 1.

This gives b = 3. We graph the function x+ 1 to the left of x = 1 and the function 3− x to125

the right of x = 1. We chose b so that they meet up perfectly at x = 1.126

y

x
−4 4

−4

4

127
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6.2 Optimization1

In calculus, the term optimization involves finding mimima or maxima of a function. For example,2

when is the tide the highest? What price will maximize profit? How can you build a box using the3

least amount of wood? These are questions of optimization.4

First, we need a little terminology. We’ve used the terms “minimum” and “maximum” informally,5

but now we need to be a little more precise. Let’s look at the graph in Figure 6.11.6

y

x
−1−2 1 2

−1

−2

1

2

−1
0

0

1

Figure 6.11: Local extrema: zooming in on f(x) = x3 − x.

Near −0.6, the graph has a local maximum (plural local maxima). In other words, if we zoom7

in closer, as on the right of Figure 6.11, it looks like the highest point on the graph is near x = −0.6.8

If we zoom back out (the left graph of Figure 6.11), we see that this point is not the highest point9

on the entire graph. So it is not a global maximum (plural global maxima) – the highest point10

on a graph.11

Near x = 0.6, we see that these is a local minimum (plural local mimima) – if we zoom in, it12

will look like the graph has a lowest point at x ≈ 0.6. But it is not a global minimum (plural13

global minima), since it is not the lowest point on the entire graph.14

We use the term local extremum (plural local extrema) to mean either a local minimum or15

maximum, and the term global extremum (plural global extrema) to mean either a global min-16

imum or global maximum. Another common term for global extremum is absolute extremum.17

You will likely see both.18

Looking for... think...

Local extrema Zooming in

Global extrema Zooming out

19
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Example 120

Consider the graph of f(x) shown below. The arrows means that the graph keeps going up (it’s21

actually a fourth-degree polynomial).22

y

x
−1−2 1 2

−1

−2

1

2

Figure 6.12: Local and global extrema on the graph of f(x) = 2x4 − 2x2 + 0.4x.

Let’s look at some features of this graph using our new terminology. At x ≈ −0.8, we have a local23

minimum and a global minimum, as this point is the lowest on the entire graph. At x ≈ 0.7, we24

have a local minimum – but it’s not a global minimum because there are lower points on the graph.25

At x ≈ 0.1, we have a local maximum – but it’s not a global maximum since the graphs extends26

upward toward infinity. There is no global maximum on this graph.27

It is worth pointing out that some graphs have no local or global extrema. Take the exponential28

function f(x) = ex, for example (see below). It is always increasing, so there can be no local or29

global maxima. There is no local or global minimum, either. You might be tempted to think that30

0 is a global minimum. But it is not possible to solve ex = 0, so there is no x-value that has a31

y-value of 0. So there are no minima, either.32

y

x
−1−2 1 2

1

2

Figure 6.13: Graph of f(x) = ex.
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Example 233

We now look at how to find extrema of a function. We consider the function f(x) = sin(x) on the34

interval [0, 4π]. Note that when we restrict the domain (the x-values), we are looking for global35

extrema over the interval [0, 4π] only. This is very common in mathematics and science. Often,36

the horizontal axis represents time, and you only ever consider some finite period of time, not an37

infinite period.38

y

x
π 2π 3π 4π

−1

−2

1

2

Figure 6.14: Graph of f(x) = sin(x) on the interval [0, 4π].

We observed earlier that when we have a local extremum, we have a horizontal tangent, as seen in39

Figure 9.15. But a horizontal line has a slope of 0, and so 0 is the slope of the tangent line – which40

is given by the derivative. So our strategy should be to find out where f ′(x) = 0.41

But f ′(x) = cos(x). From the unit circle, we know that solving cos(x) = 0 on the interval [0, 4π]
gives four solutions:

x =
π

2
,
3π

2
,
5π

2
,
7π

2
.

We know what type of extrema these are by looking at the graph. Can we do this without a
graph? The key observation is that at a local maximum, the graph is concave down, and at a
local minimum, the graph is concave up. We determine whether a graph is concave down or up by
looking at f ′′(x). So

f ′(x) = cos(x)

f ′′(x) = − sin(x)

So
f ′′
(π

2

)
= − sin

(π
2

)
= −1 < 0,

so the graph must be concave down at x =
π

2
since the second derivative is negative there, giving

a local maximum. Similarly,

f ′′
(

3π

2

)
= − sin

(
3π

2

)
= 1 > 0,
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so the graph must be concave up at x =
3π

2
since the second derivative is positive there, giving a42

local minimum. There is also a local maximum at x =
5π

2
and a local minimum at x =

7π

2
.43

Are there any global extrema? It turns out there are two global extrema,
(π

2
, 1
)

and

(
5π

2
, 1

)
,44

since there are two values of x where f(x) = 1 (again, restricting attention to the given domain).45

Likewise, there are two global minima at x =
3π

2
and x =

7π

2
.46

Two important points to take away: there may be multiple global extrema, and we can use the47

second derivative to help us determine if local extrema are minima or maxima.48

Example 349

In this example, we consider the function f(x) = 1− x4, shown in Figure 6.15.50

y

x
2−2

−2

2

Figure 6.15: Graph of f(x) = 1− x4.

We can observe a local and global maximum at the point (0, 1). Let’s use calculus to verify this.
Remember, there is a horizontal tangent there, we need to find out where f ′(x) = 0.

f(x) = 1− x4

f ′(x) = −4x3

−4x3 = 0

x = 0

So, as expected, we have f ′(0) = 0. Now let’s try the second derivative:

f ′(x) = −4x3

f ′′(x) = −12x2

f ′′(0) = 0

So since f ′′(0) = 0, we can’t tell whether the graph is concave up or concave down there – there51

might even be an inflection point. So we need to use a sign chart.52
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1. We already know that solving f ′′(x) = 0 gives x = 0.53

2. This gives the following number line:54

0
55

3. Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′′(−1) = −12(−1)2

= −12

< 0

f ′′(1) = −12(12)

− 12

< 0.

This yields the following number line:56

0

− −

57

There is no inflection point since the concavity does not change – it’s concave down on both58

sides of x = 0. This means that x = 0 is a local maximum, and in this case, also a global59

maximum.60

This and the last example show you that to find local extrema, we set f ′(x) = 0. To see if the61

function is concave up or down, use f ′′(x). This works except when f ′′(x) = 0, in which case you62

need to make a sign chart. Here’s a summary.63

To find local extrema of f(x) :

1. Determine where f ′(x) = 0.

2. Find f ′′(x) at these points.

(a) If f ′′(x) > 0, there is a local minimum.

(b) If f ′′(x) < 0, there is a local maximum.

(c) If f ′′(x) = 0, use a sign chart for f ′′(x).

64
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Global Minima and Maxima65

Not every function has local or global extrema. But in certain circumstances, we can know that66

global extrema do in fact exist.67

Extreme Value Theorem

If a function is defined on a closed interval and is
continuous, both a global minimum and a global
maximum exist.

68

What is so important about a closed interval? Let’s look at f(x) =
1

x
, shown in Figure 8.13.69

y

x
1 2

2

4

Figure 6.16: The importance of a closed interval.

We know what the graph looks like on (0, 2]; there is a vertical asymptote. Now suppose we wanted70

to create a continuous function on [0, 2] by defining the function to be some value at x = 0. Can71

you see why this is impossible? No matter how we defined f(0) – for example, f(0) = 1 – in order72

to be continuous at 0, the function would somehow have to turn around and come back down to73

the point (0, 1). This cannot be done if there is a vertical asymptote at x = 0.74

Essentially, by making the assumption that the function is defined on a closed interval, it is not75

possible for there to be any vertical asymptotes. So there must be a lowest and highest point76

somewhere on the graph. A formal proof is a bit more complicated, but the graph in Figure 8.1377

is meant to give you an idea of why this must be true.78

So if we know that global extrema exist, how do we find them? There is a straightforward way79

using calculus. First, we’ll give the method and then do some examples.80
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Suppose a function f(x) is defined on a closed interval [a, b] and is continuous.
Then both a global minimum and a global maximum exist. To find them:

1. Determine where f ′(x) = 0 or f ′(x) does not exist,

2. Evaluate f(x) at these points and the endpoints a and b,

3. Select the lowest and highest values among these function values.

81

Example 482

Let the function f(x) = 3x−x3 be defined on the closed interval [−2,
√

3]. Find the global extrema.83

The graph is shown in Figure 6.17.84

y

x
−2 2

2

−2

Figure 6.17: The graph of f(x) = 3x− x3 on the closed interval [−2,
√

3].

Let’s proceed with the steps one by one.85

1. Using the Power Rule, we get f ′(x) = 3− 3x2. Since the derivative is a polynomial, it exists
everywhere. To see where it’s 0, we solve.

f ′(x) = 0

3− 3x2 = 0

3 = 3x2

x2 = 1

x = −1,+1

2. Now evaluate at these points and the endpoints. Note that we want function values here, so
we plug into f(x).

f(−1) = −2, f(1) = 2, f(−2) = 2, f(
√

3) = 0.
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3. Looking at these function values, −2 is the lowest and 2 is the highest. Thus, there is a global86

minimum at (−1,−2), and global maxima at (−2, 2) and (1, 2). Of course, these results make87

perfect sense by looking at the graph.88

Assessment Expectations: When finding extrema, you will always be given a graph. But you89

must find the extrema using calculus, and use the graph to verify your results. You will not be90

given partial credit for just using the graph.91
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Example 592

It’s important to note that you do not have to assume that the derivative exists everywhere in order93

to find global extrema. Let’s take the example of f(x) = |x| on the closed interval [−2, 1], shown94

in Figure 9.13.95

y

x
−2 2

2

−2

Figure 6.18: The graph of f(x) = |x| on the closed interval [−2, 1].

Now let’s find the global extrema.96

1. What is f ′(x)? When x < 0, the graph is a line with slope −1, and so f ′(x) = −1 in this97

case. When x > 0, the graph is a line with slope 1, and so f ′(x) = 1 here. But what happens98

when x = 0?99

First, remember the definition of the derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

We can use this definition to look at a specific value of x, in this case, x = 0. So we’ll substitute
x = 0 and see what happens.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h
.

You can’t cancel the h out of an absolute value, so we need to make a chart.100
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h |h|/h

−0.01 −1

−0.001 −1

−0.0001 −1

0.01 1

0.001 1

0.0001 1

Table 6.1: Approximating lim
h→0

|h|
h
.

You can see that the limit does not exist, since −1 6= 1. This means you cannot take the101

derivative at x = 0, and so f ′(0) does not exist. You can see there is a sharp corner at x = 0102

on the graph; this is why a differentiable function is sometimes called a smooth function.103

And since f(x) is not differentiable at 0, we have to include x = 0 when checking for global104

extrema.105

2. Evaluating the function:

f(0) = 0, f(−2) = 2, f(1) = 1.

3. The lowest function value is 0, so there is a global minimum at (0, 0). The highest function106

value is 2, so there is a global maximum at (−2, 2).107

Example 6108

Let’s look at another example where we need to look at where f ′(x) doesn’t exist. Consider109

f(x) =
√
x on the closed interval [0, 4], shown in Figure 6.19.110

y

x
42

2

Figure 6.19: The graph of f(x) =
√
x on the closed interval [0, 4].

Again, let’s apply the steps.111

1. Writing f(x) = x1/2, we use the Power Rule to get

f ′(x) =
1

2
x−1/2 =

1

2
√
x
.
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Note that the derivative can never be 0, because the numerator is always 1. But there is a112

place the derivative is undefined: x = 0. This is because you can’t have a 0 in the denominator.113

What this means on the graph is that there is a vertical tangent at x = 0, and we know that114

vertical lines have an undefined slope.115

2. Evaluating the function:
f(0) = 0, f(4) = 2.

3. Looking for lowest and highest values, we have a global minmum at (0, 0) and a global116

maximum at (4, 2). It turns out that the only place f ′(x) is undefined is at an endpoint, but117

that won’t always be the case.118
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Homework119

1. Find the local extrema for the function f(x) = x−2 cos(x) on the interval [0, 2π]. Check that120

you’re right by graphing.121

2. Find the local extrema for the function f(x) = x5 using the method in the notes. We can122

look at a graph and see that there are none, but use calculus to show it.123

3. Find the global extrema for the function f(x) = x2/3 on the closed interval [−4, 4]. Graph124

this function on desmos (or your calculator) to verify your answer.125

4. Find the global extrema for the function f(x) = ex − x on the closed interval [−5, 2].126

5. Find the global extrema for the function f(x) = x− 1

4
lnx on the closed interval [1, 7].127
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Solutions128

1. (a) We first find where f ′(x) = 0 using the unit circle.

f(x) = x− 2 cos(x)

f ′(x) = 1 + 2 sin(x) = 0

sin(x) = −1

2

x =
7π

6
,
11π

6

(b) Next, we evaluate f ′′(x) at these points.

f ′(x) = 1 + 2 sin(x)

f ′′(x) = 2 cos(x)

Since cos

(
7π

6

)
= −
√

3

2
< 0, there is a local maximum at x =

7π

6
. Since cos

(
11π

6

)
=129

√
3

2
> 0, there is a local minimum at x =

7π

6
.130

2. (a) We first find where f ′(x) = 0.

f(x) = x5

f ′(x) = 5x4

5x4 = 0

x = 0

(b) Now check f ′′(x).

f ′(x) = 5x4

f ′′(x) = 20x3

f ′′(0) = 0

Since f ′′(0) = 0, we need to make a sign chart.131

i. We already know that solving f ′′(x) = 0 gives x = 0.132

ii. This gives the following number line:133

0
134

iii. Now choose one value from each interval. Easy values are x = −1 and x = 1.

f ′′(−1) = 20(−1)3

= −20

< 0

f ′′(1) = 20(1)3

20

> 0.

This yields the following number line:135
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0

− +

136

Thus, since the concavity changes at x = 0, there must be an inflection point there,137

and therefore no local extrema exist.138

3. (a) First, we determine when f ′(x) = 0 or when f ′(x) does not exist.

f(x) = x2/3

f ′(x) =
2

3
x−1/3

=
2

3 3
√
x

f ′(x) can never be 0 since the numerator cannot be 0. f ′(x) is undefined when x = 0139

since you can’t have 0 on the denominator.140

(b) Now evaluate at this point and the endpoints.

f(0) = 0, f(−4) =
3
√

16, f(4) =
3
√

16.

(c) Looking at largest and smallest values, we have a global minimum at (0, 0) and global141

maxima at (−4, 3
√

16) and (4, 3
√

16).142

4. (a) First, we determine when f ′(x) = 0 or when f ′(x) does not exist.

f(x) = ex − x
f ′(x) = ex − 1 = 0

ex = 1

x = 0

f ′(x) always exists since ex exists for every x.143

(b) Now evaluate at this point and the endpoints.

f(0) = e0 − 1 = 0, f(−5) = e−5 − (−5) ≈ 4.99, f(2) = e2 − 2 ≈ 5.39.

(c) Looking at largest and smallest values, we have a global minimum at (0, 0) and global144

maximum at (2, e2 − 2).145

5. (a) First, we determine when f ′(x) = 0 or when f ′(x) does not exist.

f(x) = x− 1

4
lnx

f ′(x) = 1− 1

4
· 1

x
= 1− 1

4x
= 0

1

4x
= 1

4x = 1

x =
1

4

However, we cannot consider this point since
1

4
is not in the interval [1, 7].146

f ′(x) always exists since the denominator cannot be 0 since we are looking at the closed147

interval [1, 7].148
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(b) Now evaluate at the endpoints.

f(1) = 1− 1

4
ln 1 = 1, f(7) = 7− 1

4
ln 7 ≈ 6.51

(c) Looking at largest and smallest values, we have a global minimum at (1, 1) and global149

maximum at

(
7, 7− 1

4
ln 7

)
.150
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6.3 Applications of the Extreme Value Theorem1

Example 12

Suppose two positive numbers sum to 10. What is the largest their product can be?3

We can make a chart to try and guess the answer.4

First # Second # Product

1 9 9

2 8 16

3 7 21

4 6 24

4.5 5.5 24.75

5 5 25

5

Of course there’s no need to continue the chart since we’ll just get the same numbers again, though6

in the opposite order. Also, the numbers don’t always have to be integers.7

Making a chart is not a rigorous mathematical justification. We’ll use what we learned about8

optimization to show that the largest the product can be is in fact, 25.9

Notice that we are not given a function in this problem. This is what makes optimization problems10

tricky. You have to work out what the function is before you start using calculus.11

We’ll use the notation f(x), so we need to decide just what “x” represents – just like t represented12

time when we looked at displacement and velocity graphs. Since we’re looking for the product of13

two numbers, we can represent the first number by x.14

We might be tempted to say, “Well, let y represent the second number. That way, we can represent15

the product by f(x) = x · y.” The only problem with this is that now we have two variables – but16

optimizing with two variables is much more difficult, and doesn’t come until Calculus III.17

But we’re given a bit more information. We know that the sum of the two numbers has to be 10,
which we can write as

x+ y = 10.

Now we can solve this for y, which gives up y = 10 − x. Plugging back in, we can rewrite our
function as

f(x) = x(10− x).

Now we have our function. The important observation is that we are asked for the largest product,18

which means we need a global maximum. We just learned a way to find global extrema for continuous19

functions – and f(x) is a polynomial, so it is continuous.20
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Another tricky part, though, is the Extreme Value Theorem can be used only when the function is21

defined on a closed interval. So not only do we need to determine a function, we need a reasonable22

interval to define the function on.23

Since the numbers have to be positive, it makes sense to start at 0. What is the upper limit? Well,24

since the positive numbers have to sum to 10, there is no way one of the numbers can be larger25

than 10. So a closed interval which makes sense is [0, 10].26

What we’ve done is “translated” the original word problem into an optimization problem: Find27

the global extrema of the function f(x) = x(10− x) on the closed interval [0, 10]. Let’s proceed to28

apply the three steps to finding these extrema. Keep in mind that we are not asked for a minimum29

value, so we really only have to look for a global maximum in this example.30

1. First, find out where f ′(x) = 0. Note that it is simpler to multiply out f(x) instead of trying
to use the Product Rule right away.

f(x) = x(10− x)

= 10x− x2

f ′(x) = 10− 2x = 0

x = 5

2. Next, evaluate f(x) at these points as well as the endpoints.

f(5) = 25, f(0) = 0, f(10) = 0.

3. By looking at the values just obtained, we see that there is a global maximum at the point31

(5, 25), and so 25 is largest possible product.32

This seems like a lot of work for just one problem, but it is important to understand why we need33

to take each step. Once we’ve done it once, we can summarize the process and use it to investigate34

more examples.35

Optimization Strategy36

To solve an optimization word problem:

1. Determine what the variable x represents, and write it down.

2. Use this to find a function f(x) to optimize. Sometimes it will look like
you need two variables (like in the previous example), but you will always
be able to break it down to just one variable.

3. Find a closed interval which makes sense for the problem.

4. Find the global extrema (whichever you are asked for) using the Extreme
Value Theorem.

37
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The main challenge here is that there is no one-size-fits-all method to complete steps (1), (2), and38

(3). It will be different for each problem. Once we’re at step (4), we can use what we learned about39

the Extreme Value Theorem. This is often the easiest part. So we’ll look at some more examples40

to see how to set up various types of word problems.41

Example 242

Suppose you are given a positive number. First, take the square root. Then add 3. Finally, subtract43

the given number. What is the largest number you can obtain as a result?44

Let’s look at an example to see what is being asked. If we start with 4, we get
√

4 = 2. Then we45

add 3, giving 2 + 3 = 5. Finally, subtract 4 (the original number) to get 5− 4 = 1.46

It turns out we can do a bit better than that. We’ll find out how much better by using optimization.47

So let’s go through the steps one by one.48

1. It makes sense to let x represent the positive number you are given.49

2. What are we asked to optimize? First we take a number and take the square root,
√
x. Then

add 3 :
√
x+ 3. Finally subtract the given number, x, giving

√
x+ 3− x. So

f(x) =
√
x+ 3− x.

Note that in this case, there is no need to introduce a second variable.50

3. Since x represents a positive number, it makes sense to start at 0. Note that as x gets larger,
it becomes greater than

√
x, and is subtracted from

√
x. So f(x) will eventually become

negative. When? We know that f(4) = 1, which is still positive. But

f(9) =
√

9 + 3− 9 = −3,

so it looks like we can stop at x = 9, giving the closed interval [0, 9].51

4. So now we have the optimization problem of finding the global maximum of f(x) on the52

closed interval [0, 9]. We have a three-step process to do this.53

(a) When is f ′(x) = 0?

f(x) =
√
x+ 3− x

f ′(x) =
1

2
√
x
− 1 = 0

1

2
√
x

= 1

2
√
x = 1

√
x =

1

2

x =
1

4
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(b) Now evaluate f(x) at this value and the endpoints.

f

(
1

4

)
=

√
1

4
+ 3− 1

4
=

1

2
+ 3− 1

4
=

13

4
, f(0) = 3, f(9) = −3.

(c) The largest of these values is
13

4
, so there is a global maximum at

(
1

4
,
13

4

)
. Note that54

it would be very difficult to guess this value just by making a chart, so we really do need55

to use calculus here.56

Example 357

Now we’ll move on to some examples from geometry. Suppose you want to fence in a rectangular58

area next to a wall, as shown in Figure 6.20. If you have 60 m of fencing, what is the largest area59

you can enclose?60

x

y

x

Figure 6.20: A fenced-in area next to a wall.

1. Let x represent the length of one of the sides of the rectangle, and y the length of the other61

side, as labelled in Figure 6.20. It is important to note that you could have labeled the62

horizontal side of the rectangle x and the vertical sides y, and you would still get the same63

answer. The algebra would be different – but you’d still get the same answer. It is often64

possible to make more than one model for the same word problem.65

2. Since we are asked to maximize the area, it makes sense to let f(x) = x · y, which is the
formula for the area of a rectangle. This gives us two variables again – but since we know we
have 60 m of fencing, we know that

x+ y + x = 60.

From this, we get y = 60− 2x, so

f(x) = x(60− 2x) = 60x− 2x2.

Again, it’s easier to multiply out so we can use the Power Rule instead of the Product Rule.66

3. What closed interval should we choose? Since we have 60 m of fence total, no side can be67

less that 0 m or greater than 60 m, so [0, 60] would be one choice. But if you see that two68

of the sides of the rectangle have length x, then x cannot be greater than 30 m. So you can69

also use [0, 30]. It’s usually easier to work with smaller numbers, so let’s use [0, 30].70
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4. Now we’ve translated the word problem into the following optimization problem: Find the71

global maximum of the function f(x) = 60x − 2x2 on the closed interval [0, 30]. So we now72

follow the three steps for solving an optimization problem.73

(a) Observe that f ′(x) always exists, since f(x) is a polynomial. We need to find where
f ′(x) = 0.

f(x) = 60x− 2x2

f ′(x) = 60− 4x = 0

4x = 60

x = 15

(b) Now evaluate at this point and the endpoints.

f(0) = 0, f(15) = 450, f(30) = 0.

(c) The largest value is 450, so there is a global maximum at (15, 450), and thus the largest74

possible area is 450 m2.75

Let’s see what happens if we labeled the sides of the rectangle differently, as shown in Figure 6.21.76

This time, x represents the horizontal side of the rectangle.

y

x

y

Figure 6.21: A fenced-in area next to a wall.

77

Note that we still have f(x) = x · y, as we are maximizing an area. But this time, we have

y + x+ y = 60,

instead of x+ y + x = 60. We’ll see that the work will be a little different, but the maximum area78

will still be the same.79

Solving for y, we get

y + x+ y = 60

2y = 60− x

y = 30− x

2
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Substituting back into f(x), we get

f(x) = x · y

= x
(

30− x

2

)
= 30x− 1

2
x2

Our chosen interval will be different, too. Since there is just one side which is x, we need to use80

the interval [0, 60]. We might have a very thin rectangle with the longer sides being horizontal.81

Now we’ve translated the word problem into the following optimization problem: Find the global82

maximum of the function f(x) = 30x− 1

2
x2 on the closed interval [0, 60]. Again, we follow the three83

steps for solving an optimization problem.84

1. Observe that f ′(x) always exists, since f(x) is a polynomial. We need to find where f ′(x) = 0.

f(x) = 30x− 1

2
x2

f ′(x) = 30− x = 0

x = 30

2. Now evaluate at this point and the endpoints.

f(0) = 0, f(30) = 450, f(60) = 0.

3. The largest value is 450, so there is a global maximum at (30, 450), and thus the largest85

possible area is 450 m2. Note that since x represented the length of the horizontal sides of86

the rectangle, we get a different x-value (this time, 30), but the maximum area is still 450,87

as before.88

Example 489

Suppose you are given a right isosceles triangle whose legs are 2 units long. Inscribe a rectangle in90

the triangle as shown in Figure 6.22. What is the largest the area of such a rectangle can be?91

1. Let x represent the width of the rectangle, as shown in Figure 6.22.92

2. Since we are looking to maximize the area of the rectangle, we need a function to represent93

length × width. We called x the width – so what is the height? Look at the shaded right94

isosceles triangle on the right of Figure 6.22. Since the horizontal leg has length x, then the95

vertical leg has length x as well. So to get the height of the rectangle, we just substract x96

from 2 to get 2− x. Thus, the area of the rectangle is f(x) = x(2− x) = 2x− x2.97

3. Looking at how the rectangle is inscribed in the triangle, we see that an appropriate closed98

interval for x is [0, 2].99
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x

2

2− x

x

x

Figure 6.22: Optimizing the area of a rectangle inscribed in a triangle.

4. Now we have the following optimization problem: find the global maximum of f(x) = 2x−x2100

on the closed interval [0, 2].101

(a) First, note that f ′(x) exists everywhere since f(x) is a polynomial. Now we need to see
where f ′(x) = 0.

f(x) = 2x− x2

f ′(x) = 2− 2x = 0

2x = 2

x = 1

(b) Now evaluate f(x) at this point and the endpoints.

f(0) = 0, f(1) = 1, f(2) = 0.

(c) Note that 1 is the largest among these values, so there is a global maximum at (1, 1).102

Thus, the largest possible area is 1 unit2, in which case the rectangle is actually a square.103
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Homework:104

1. The product of two positive numbers is 16. What is the smallest possible value for their sum?105

2. Suppose you start with a positive number. Square it, and then multiply by 2. Then subtract106

the square root of the given number. What is the smallest result you can obtain by doing107

this? Note: the answer is a simple fraction.108

3. Suppose you have 40 m of fencing and you want to enclose a rectangular region in a corner,109

as shown in Figure 6.23. What is the largest area you can enclose?110

y

x

Figure 6.23: A fenced-in area in a corner.

4. Suppose you want to inscribe a rectangle in a right triangle, as shown in Figure 6.24. What111

is the largest area of such a rectangle? Hint: you will need to look at ratios of corresponding112

sides of similar triangles for this problem.113

4

2

Figure 6.24: Optimizing the area of a rectangle inscribed in a triangle.
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Solutions114

Problem 1115

1. Let x be one of the positive numbers, and let y be the other one.116

2. Since we are minimizing the sum, let f(x) = x+y. We are given that xy = 16, and so y =
16

x
,

so that

f(x) = x+
16

x
.

3. Since x must be positive but cannot be 0, we choose a small value like 0.1 for the left endpoint.117

For the right endpoint, we “guesstimate.” Now 16 · 1 = 16 and 16 + 1 = 17, while 8 · 2 = 16118

and 8 + 2 = 10. So it looks like the sums getting larger as we from x = 8 to 16 and beyond.119

So we’ll choose the interval [0.1, 16].120

4. Now optimize f(x) = x+
16

x
on the closed interval [0.1, 16].121

(a) Then f(x) = x + 16x−1, so that f ′(x) = 1 − 16x−2. Note that f ′(x) is always defined
(remember, x cannot be 0 since it is not in the interval [0.1, 16]).

f ′(x) = 0

1− 16

x2
= 0

1 =
16

x2

x2 = 16

x = −4,+4

x = 4 − 4 is not in the domain

(b) Now evaluate at this point and the endpoints.

f(0.1) = 160.1, f(4) = 8, f(16) = 17.

(c) The smallest of these values is 8, so 8 is the minimum possible sum.122
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Problem 2123

1. Let x represent the positive number.124

2. f(x) = x2 · 2−
√
x = 2x2 − x1/2.125

3. f(0) is defined, so we take 0 to be the left endpoint. Let’s try a few more values that are easy
to calculate:

f(4) = 2 · 16− 2 = 30, f(9) = 2 · 81− 3 = 159.

We’ll only get bigger after x = 9, so we’ll choose our closed interval to be [0, 9].126

4. Now optimize f(x) = 2x2 − x1/2 on the closed interval [0, 9]. Note that

f ′(x) = 4x− 1

2
x−1/2 = 4x− 1

2
√
x
.

(a) f ′(x) is undefined at x = 0, but this is an endpoint, so it’s already taken care of. Now
solve f ′(x) = 0.

f ′(x) = 0

4x− 1

2
√
x

= 0

4x =
1

2
√
x

4x · 2
√
x = 1

x3/2 =
1

8(
x3/2

)2/3
=

(
1

8

)2/3

x =
1

4

(b) Evaluate here and at the endpoints.

f(0) = 0, f

(
1

4

)
= −3

8
, f(9) = 159.

(c) We conclude that −3

8
is the smallest value for f(x), obtained at x =

1

4
.127
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Problem 3128

1. Let x represent the length of one of the sides of the rectangle, and y the length of the other129

side.130

2. Since we are asked to maximize the area, it makes sense to let f(x) = x · y. This gives us two
variables again – but since we know we have 40 m of fencing, we know that

x+ y = 40.

From this, we get y = 40− x, so

f(x) = x(40− x) = 40x− x2.

3. Since we have 40 m of fence total, no side can be less that 0 m or greater than 40 m, so [0, 40]131

would be a good choice.132

4. Now we’ve translated the word problem into the following optimization problem: Find the133

global maximum of the function f(x) = 40x− x2 on the closed interval [0, 40].134

(a) Observe that f ′(x) always exists, since f(x) is a polynomial. We need to find where
f ′(x) = 0.

f(x) = 40x− x2

f ′(x) = 40− 2x = 0

2x = 40

x = 20

(b) Now evaluate at this point and the endpoints.

f(0) = 0, f(20) = 400, f(40) = 0.

(c) The largest value is 400, so there is a global maximum at (20, 400), and thus the largest135

possible area is 400 m2.136
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Problem 4137

1. Let x be the width of the rectangle, as shown in Figure 6.25.138

x

x

4

2
x/2

Figure 6.25: Optimizing the area of a rectangle inscribed in a triangle.

2. In the original triangle, the longer leg is twice the shorter leg, and so in the similar gray
shaded triangle, the shorter leg must have length x/2. This means the height of the rectangle

is 2− x

2
. We are maximizing the area, so we let f(x) be the width times the height, or

f(x) = x
(

2− x

2

)
= 2x− x2

2
.

3. Looking at how the rectangle is inscribed in the triangle, we see that an appropriate closed139

interval for x is [0, 4].140

4. Now we have the following optimization problem: find the global maximum of f(x) = 2x− x
2

2
141

on the closed interval [0, 4].142

(a) First, note that f ′(x) exists everywhere since f(x) is a polynomial. Now we need to see
where f ′(x) = 0.

f(x) = 2x− x2

2
f ′(x) = 2− x = 0

x = 2

(b) Now evaluate f(x) at this point and the endpoints.

f(0) = 0, f(2) = 2, f(4) = 0.

(c) Note that 2 is the largest among these values, so there is a global maximum at (2, 2).143

Thus, the largest possible area is 2 unit2.144



Section 6.4 � Intermediate Value Theorem 155

6.4 Intermediate Value Theorem1

We began our discussion of continuity by looking at the behavior of the graph of a function at2

certain points, such as a jump in the graph. We also needed continuity for the Extreme Value3

Theorem – necessary for optimization, an important application of calculus. We’ll see another use4

for continuity – showing that equations have solutions in a given interval.5

Let’s start by looking at part of graph, shown in Figure 8.12.6

y

x
−1 0 1 2 3 4

−1

1

2

3

4

Figure 6.26: Illustrating the Intermediate Value Theorem.

This is the graph of some function on the closed interval [−1, 4], with part of the graph obscured.7

Will the graph cross the blue line y = 1?8

Not necessarily. In Figure 6.27, we see a simple way to complete the graph so it does not cross the9

line.

y

x
−1 0 1 2 3 4

−1

1

2

3

4

Figure 6.27: Illustrating the Intermediate Value Theorem.

10

Now let’s see where continuity comes into play. Let’s ask basically the same question, with a twist:11

if we assume that the graph in Figure 8.12 is a continuous function, does it have to cross the blue12

line?13
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The answer to this questions is “Yes.” This is called the Intermediate Value Theorem in calculus.14

The term “intermediate” is used in the following sense: if we know two different y-values that a15

continuous function takes on, then it must also take on every y-value between these two values –16

that is, every intermediate y-value. It is usually stated as follows.17

Intermediate Value Theorem
Suppose f(x) is a continuous function defined on a closed interval [a, b]. If f(a) 6= f(b),
and if c is between f(a) and f(b), then there is some x0 in the open interval (a, b)
such that f(x0) = c.

18

This theorem is a way – using calculus terminology – to describe what we observed by looking at19

graphs. We need this terminology because there is an infinite number of ways of drawing continuous20

graphs between points – and there is no way we can draw an infinite number of graphs and look21

at them all. But we can create a proof using calculus concepts. We won’t look at a proof, but it’s22

important to know how to describe using calculus terminology what we visually observe. So let’s23

talk through this theorem using the simplest way of creating a continuous graph – just drawing a24

straight line through the missing part of the graph.25

y

x
−1 0 1 3 4

−1

1

2

3

4

x0

Figure 6.28: Illustrating the Intermediate Value Theorem.

This function is continuous – no jumps, no discontinuities. The closed interval we’re looking at26

is [a, b] = [−1, 4], as we see from the graph. We also observe that f(−1) = 0 and f(4) = 4, and27

so f(−1) 6= f(4). Also, c = 1 is between 0 and 4. So x0 =
5

3
is that number in the open interval28

(−1, 4) such that f

(
5

3

)
= 1. In Figure 6.29, you can see all these values annotated.29

The important point is that the Intermediate Value Theorem doesn’t tell you how to find this x030

– it is often quite difficult, requiring a computer or calculator to find. In mathematics, we call this31

an existence proof. It tells you there is a thing, but not how to find it.32
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y

x
a = −1 0 1 3 b = 4

−1

1

2

3

4

c = 1

x0

Graph of f(x)

(−1, 0)

(4, 4)

Figure 6.29: Illustrating the Intermediate Value Theorem.

This type of thing happens every day. Think about the stock market. Suppose you have $1000 to33

invest. When the stock market opens, you’d like to buy the stock which will have the highest gain34

at the end of the day. Which one should you buy?35

Well, there is one. When the stock market closes, you’d be able to figure it out by looking at the36

percentage increase or decrease of all the stocks. So when the market opens, there exists a stock37

which will have the highest percentage gain, but at that time, you don’t know what it is. You just38

know that one exists.39

This is similar to the Intermediate Value Theorem. It tells you that something exists, but it doesn’t40

tell you what it is. Let’s look at some examples. We’ll use the abbreviation IVT for the Intermediate41

Value Theorem.42

Example 143

Show that the graphs of y = x and y = cos(x) intersect somewhere in the interval [0, π], as shown44

in Figure 6.30.45

How can we use the IVT to show this? We want to show that x = cos(x) has a solution in the
closed interval [0, π]. The first step is to define a function

f(x) = x− cos(x).

Then observe that solving x = cos(x) is the same as solving f(x) = 0. We need a function to apply46

the IVT, so we need to create one. Let’s see why this works. We must also state that f(x) is47

continuous as it is a difference of two continuous functions: a basic trigonometric function and a48

polynomial.49

To use the IVT, we need to evaluate f(x) at the endpoints. So

f(0) = 0− cos(0) = −1, f(π) = π − cos(π) = π + 1 ≈ 4.14.
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y

x
π

1

3

−1

Figure 6.30: Graphs of y = x and y = cos(x) on the interval [0, π].

We remark that f(0) is negative because at x = 0, the graph of y = x is below the graph of50

y = cos(x), and f(π) is positive because at x = π, the graph of y = x is above the graph of51

y = cos(x).52

Now the IVT states that “If f(a) 6= f(b), and if c is between f(a) and f(b), then there is some x0
in the open interval (a, b) such that f(x0) = c.” Here, a = 0 and b = π. Our calculations show that
f(0) 6= f(π). We’ll choose c = 0 (since we want to solve f(x) = 0), and clearly 0 is between −1 and
4.14. So there must be some x0 in [0, π] with f(x0) = 0. This means that

f(x0) = 0

x0 − cos(x0) = 0

x0 = cos(x0)

Thus, the point x0 is a point where the graphs of y = x and y = cos(x) intersect. Two important53

points:54

1. The IVT doesn’t tell you where they intersect. But using a computer, you can approximate55

the solution to be x0 ≈ 0.739. In general, you need a computer to solve equations which56

combine trigonometric functions and polynomials.57

2. There may be more than one point of intersection. The IVT tells you that a point exists, but58

doesn’t tell you how many. To say that such a point exists means there is at least one point.59

There could be more.60

It seems obvious that the graphs intersect by looking at them. Keep in mind that the IVT was61

proved long before the age of computers – you couldn’t just type in the equations and have the62

graphs pop up. Typically, mathematicians use graphs to look for different features of a graph, and63

use results like the IVT to prove that these features do in fact exist.64

Here’s a summary of the steps to take to show that two curves intersect.65
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To show that two continuous curves intersect over a given closed interval:

1. Create a function which is the difference of the equations for the curves.

2. Evaluate the function at the endpoints of the closed interval.

3. State that 0 is between these values, so by the IVT, there is some x0 where the function
evaluates to 0.

4. Conclude that the curves intersect at this value x0.

66

Example 267

Let’s do another example where we use these steps.68

Show that the graphs of y = 4− x and y = lnx intersect somewhere in the closed interval [1, 5].69

y

x
1 2 3 4 5

1

3

−1

2

Figure 6.31: Graphs of y = 4− x and y = lnx on the interval [1, 5].

1. Define f(x) = 4 − x − ln(x). When you subtract the functions, it doesn’t make sure which70

order you subtract them in – the logic is the same either way.71

2. We calculate:
f(x) = 4− 1− ln 1 = 3, f(5) = 4− 5− ln 5 ≈ −2.61.

3. Since 0 is between 3 and −2.61, by the IVT there is some value of x0 between 1 and 5 such72

that f(x0) = 0.73

4. Since f(x) was defined as the difference between the equations for the graphs, they intersect74

at this point x0. You need a calculator or computer to find that x0 ≈ 2.93.75
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Homework76

1. Show that the graphs of the curves y = e2x and y = 4 − x2 intersect in the closed interval77

[0, 2].78

2. Show that the graphs of the curves y =
lnx

x
and y = ex − 5 intersect in the closed interval79

[1, 2].80

3. Show that the graphs of the curves y = sin(2x) and y = 1 − cos(x) intersect three times in81

the closed interval [0, 2π]. Hint: Graph these functions on desmos. You should only have to82

use the IVT once, but you’ll see that you can’t use the closed interval [0, 2π] when you apply83

the IVT.84
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Solutions85

Problem 186

1. Let f(x) = e2x − (4− x2) = e2x − 4 + x2.87

2. Evaluate:
f(0) = −3, f(2) ≈ 54.6.

3. Note that −3 < 0 < 54.6, so by the IVT, there is some x0 where f(x0) = 0.88

4. This means that the curves intersect at (x0, f(x0)) (and possibly other points).89

Problem 290

1. Let f(x) =
lnx

x
− (ex − 5) =

lnx

x
− ex + 5.91

2. Evaluate at the endpoints.
f(1) ≈ 2.28, f(2) ≈ −2.02.

3. Note that −2.02 < 0 < 2.28, so by the IVT, there is some x0 where f(x0) = 0.92

4. This means that the curves intersect at (x0, f(x0)) (and possibly other points).93

Problem 394

1. Let f(x) = sin(2x)− (1− cos(x)) = sin(2x)− 1 + cos(x).95

2. By looking at the graphs on desmos, it appears that the curves intersect at x = 0 and x = 2π.
It is not difficult to evaluate f(0) = 0 and f(2π) = 0, meaning that the curves intersect at

x = 0 and x = 2π. It looks like there is a third intersection somewhere between
π

4
and

π

2
, so

we use the closed interval
[π

4
,
π

2

]
. We now evaluate at the endpoints of this interval.

f
(π

4

)
= sin

(π
2

)
− 1 + cos

(π
4

)
=

1√
2
, f

(π
2

)
= sin(π)− 1 + cos

(π
2

)
= −1.

3. Note that −1 < 0 <
1√
2
, so by the IVT, there is some x0 where f(x0) = 0.96

4. This means that the curves intersect at (x0, f(x0)) (and possibly other points).97
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Chapter 71

Asymptotes and Infinity2
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7.1 Asymptotes and Limits to Infinity, I3

We have described many features of graphs up to the point using limits and calculus. The last4

features we will describe are horizontal and vertical asymptotes. We’ll look at some new notation5

by examining the graph of f(x) =
1

x
.6

y

x
−5 5

−5

5

lim
x→−∞

f(x) = 0

lim
x→∞

f(x) = 0

lim
x→0+

f(x) DNE (+∞)

lim
x→0−

f(x) DNE (−∞)

Figure 7.1: Graph of f(x) =
1

x
with asymptotes described.

Let’s see what this new notation means.7

1. The +x axis. We read this as “the limit as x goes to infinity of f(x) is 0.” Graphically, this8

means that f(x) is getting closer and closer to 0 as x gets further and further along the x9

axis. We can also see this using a chart of values, like we did when taking lim
h→0

sin(h)

h
.10

x 1/x

1 1

10 0.1

100 0.01

1000 0.001

10,000 0.0001

Table 7.1: Looking at lim
x→∞

f(x) = 0.
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We will look at rules for evaluating such limits later, but the chart is a numerical confirmation11

that this limit is 0. This means that y = 0 is a horizontal asymptote as we look to the right.12

2. The +y axis. We read this as “The limit as x goes to 0 from the right does not exist, but13

it approaches positive infinity,” meaning the values of the function keep getting larger and14

larger without bound.15

Again, we look at a numerical chart to see what’s happening. We can see that the values of

x 1/x

1 1

0.1 10

0.01 100

0.001 1000

0.0001 10,000

Table 7.2: Looking at lim
x→0+

f(x) DNE (+∞).

16

f(x) will keep getting larger the smaller that x gets. So there is no limiting value – the limit17

does not exist. The notation “(+∞)” indicates that the graph moves up along the positive y18

axis, but never actually touches it.19

3. The −x axis. We read this as “The limit as x approaches negative infinity of f(x) is 0.”20

There is no need to make a chart here; it will look very similar to the chart for the +x axis.21

This means y = 0 is also a horizontal asymptote as we look to the left. It is important to22

observe that here, the curve approaches the asymptote from below, but at the +x axis, the23

curve approaches the asymptote from above. The notatation itself does not tell you if the24

curve approaches from above or below, so you need to do additional work to decide which.25

4. The −y axis. We read this as “The limit as x approaches 0 from the left does not exist, but26

it approaches negative infinity.” Again, a chart would look very similar to that for the +y27

axis. As x moves closer and closer to 0 from the left, the graph approaches the y axis, and28

keeps going down along the y axis, with no lower bound. Thus, there is no lower limit – this29

is what “DNE (−∞)” means.30

The types of functions we’ll be looking at are rational functions, which are ratios of polynomials;31

f(x) =
1

x
, for example. That is, the numerator and denominator of the function are both poly-32

nomials. We’ll state how to find asymptotes of such functions, and then look at several examples.33

Remember that the degree of a polynomial is the highest power of x occurring in a polynomial,34

and that the degree of a constant polynomial (like f(x) = 5) is 0, since 5 = 5 · x0. Also, the lead-35

ing coefficient of a polynomial is the coefficient of the term with highest degree. So the leading36

coefficient of 3x4 − 2xx + 5x is 3.37
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Suppose f(x) =
p(x)

q(x)
is a rational function. Let N be the degree of p(x), and D be the degree

of q(x). To find the horizontal asymptotes:

1. If N > D, there are no horizontal asymptotes.

2. If N = D, then there is a horizontal asymptote, in both directions, at y = c, where c is
the ratio of the leading coefficients of the numerator and denominator.

3. If N < D, there is a horizontal asymptote, in both directions, at y = 0.

To find the vertical asymptotes, first cancel out common factors of the numerator and denom-
inator, if any. Then there are vertical asymptotes where the denominator is equal to 0.

38

We’ll look at several examples which illustrate all of these possibilities.39
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Example 140

The graph of f(x) =
1

x2
is shown in Figure 7.2.41

y

x
−5 5

−5

5

lim
x→−∞

f(x) = 0
lim
x→∞

f(x) = 0

lim
x→0

f(x) DNE (+∞)

Figure 7.2: Graph of f(x) =
1

x2
with asymptotes described.

Let’s apply our method here. For the numerator, N = 0 since a constant has degree 0, and for the42

denominator D = 2. Since N < D, y = 0 is a horizontal asymptote.43

Now let’s look at vertical asymptotes. There are no factors to cancel, so we look at when x2 = 0,
which is when x = 0. Thus, there is a vertical asymptote at x = 0. Because f(x) must always be
positive, then

lim
x→0−

f(x) DNE (+∞), lim
x→0+

f(x) DNE (+∞).

Since we have DNE (+∞) from the left and the right, we can just write

lim
x→0

f(x) DNE (+∞).

This is similar to how we used the limit notation when looked at one-sided limits earlier. It is44

important to note that this notation describes the asymptotic behavior at x = 0, but it does not45

mean that the limits exist. Remember, DNE means “does not exist.”46
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Example 247

The graph of f(x) =
4x

x2 + 1
is shown in Figure 7.3.48

y

x
−6 −3 3 6

−3

3

lim
x→−∞

f(x) = 0

lim
x→∞

f(x) = 0

Figure 7.3: Graph of f(x) =
4x

x2 + 1
with asymptotes described.

Let’s apply our method here. For the numerator, N = 1, and for the denominator D = 2. Since49

N < D, y = 0 is a horizontal asymptote. Let’s take a moment to see why.50

As x→∞, the denominator – having a higher degree – blows up faster than the numerator. This51

forces the fraction to 0. A few values support this, as seen in the following chart. f(1) = 2, but52

other values are approximate.53

x f(x)

1 2

10 0.4

100 0.04

1000 0.004

10,000 0.0004

Table 7.3: Looking at lim
x→∞

f(x) = 0.

How do we know the graph approaches y = 0 from above here? Note that for large, positive x,

f(x) =
+

+
= + > 0,

and so we approach from above.54

A chart as x→ −∞ looks similar. The graph approaches y = 0 from below since for negative x,

f(x) =
−
+

= − < 0,
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which means we approach from below. These calculations are necessary if you do not have a graph55

of the function.56

Since the denominator can never be 0 (x2 + 1 is always positive), there are no vertical asymptotes.57

Example 358

The graph of f(x) =
3x2 + x

4x2 − 4
is shown in Figure 7.4. There is a lot going on here, so let’s go one59

step at a time.60

y

x
−5 5

−5

5

lim
x→−∞

f(x) =
3

4
lim
x→∞

f(x) =
3

4

lim
x→1+

f(x) DNE (+∞)lim
x→−1−

f(x) DNE (+∞)

lim
x→1−

f(x) DNE (−∞)lim
x→−1+

f(x) DNE (−∞)

Figure 7.4: Graph of f(x) =
3x2 + x

4x2 − 4
with asymptotes described.

The degree of the numerator is N = 2, and the degree of the denominator is D = 2. Since N = D,61

we have a horizontal asymptote at the ratio of the leading coefficients, or y =
3

4
. Let’s see why this62

makes sense.63

The terms with the highest power of x take over as x → ∞. In other words we can say that for
large x,

f(x) =
3x2 + x

4x2 − 4
≈ 3x2

4x2
=

3

4
.

A brief table of function values (see Table 7.5) supports this. You can see how the function values64

approach
3

4
= 0.75. Also observe that for values of x far to the left or right, f(x) =

+

+
= +, so the65

graph approaches the horizontal asymptote from above in both directions.66
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x f(x)

1000 0.750251

10,000 0.750025

100,000 0.750003

Table 7.4: Looking at lim
x→∞

f(x) =
3

4
.

Now let’s find the vertical asymptotes. First, note that we cannot cancel any factors, since

f(x) =
3x2 + x

4x2 − 4
=

x(3x+ 1)

4(x+ 1)(x− 1)
.

So now see where the denominator is 0, which is when x = −1 or x = 1. Thus, the lines x = −167

and x = 1 are vertical asymptotes.68

From the graph, it is easy to see the limits as x approaches 1 from the left and right. But suppose
you didn’t have a graph? We make a brief table of approximate values with numbers close to 1 on
either side. These values make the trend clear. Note that the graph approaches the asymptote in

x f(x)

0.99 −49.3756

0.999 −499.375

1.01 50.6256

1.001 500.625

Table 7.5: Looking at lim
x→1−

f(x) and lim
x→1+

f(x).

different directions at x = 1, and so we write

lim
x→1

f(x) DNE.

Contrast this to Example 1, where we were able to write

lim
x→0

f(x) DNE (+∞).

We observe similar behavior at x = −1, and so skip the details.69
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Example 470

The graph of f(x) =
2x2 − 5

2x− 3
is shown in Figure 7.6.71

y

x
−4 4

−3

5

lim
x→1.5−

f(x) DNE (+∞)

lim
x→1.5+

f(x) DNE (−∞)

Figure 7.5: Graph of f(x) =
2x2 − 5

2x− 3
with asymptotes described.

Let’s start with the horizontal asymptotes. The degree of the numerator is N = 2 and the degree
of the denominator is D = 1. Since N > D, there are no horizontal asymptotes. This makes sense,
since as x moves further out in either direction, we approximate

f(x) =
2x2 − 5

2x− 3
≈ 2x2

2x
= x.

Thus, there is no limiting value for f(x) as x→∞ or x→ −∞.72

Now let’s look at vertical asymptotes. The only candidate is x = 3/2, since this is where the
denominator is 0. We do need to check if any factors cancel, though. Now if the 2x− 3 did cancel,
we’d need a factor of 2x − 3 in the numerator. This means that if we plug x = 3/2 into the
numerator, we’d also have to get 0. But

2

(
3

2

)2
− 5 = −1

2
6= 0,

so there is no cancellation. As with Example 3, we can make a brief chart of values to see the73

behavior of the graph as it approaches the asymptote x =
3

2
. We’ll skip that here.74
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Example 575

The graph of f(x) =
x2 − 1

x− 1
is shown in Figure 7.6.76

y

x
−3 3

−3

3

Figure 7.6: Graph of f(x) =
x2 − 1

x− 1
.

Let’s first look for horizontal asymptotes. The degree of the numerator is N = 2 and the degree of77

the denominator is D = 1. Since N > D, there are no horizontal asymptotes.78

At first glance, it looks like there is a vertical asymptote at x = 1. But in this case, the numerator
factors, and so

f(x) =
x2 − 1

x− 1
=

(x+ 1)(x− 1)

x− 1
= x+ 1.

So it looks like the graph of f(x) is just a straight line, y = x+ 1. This is almost correct – but we79

can’t skip over the fact that the original function is not defined at x = 1, since we’d get
0

0
. So we80

need to put an open circle at (1, 2). This is because we can use the formula x+ 1 only when x 6= 1,81

since f(x) is undefined at x = 1.82
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Homework83

1. For each of the following functions, first graph it is desmos, then find all asymptotes. Describe84

the behavior at the asymptotes using limit notation, as in the examples in the notes.85

(a) f(x) =
x

x2 − 4
86

(b) f(x) =
x3 − 1

x3 + 1
87

(c) f(x) =
x2 − x− 2

x2 − 1
88

2. For the function in 1(b), show how you would describe the behavior at the vertical asymptote89

if you did not have a graph.90

3. For the function in 1(c), show how you would know if the graph approached the horizontal91

asymptote from above or below as x→ −∞ and x→∞ if you did not have a graph.92
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Solutions93

1. (a) Since N = 1 and D = 2 and N < D, there is a horizontal asymptote at y = 0. We write

lim
x→−∞

f(x) = 0, lim
x→∞

f(x) = 0.

No factors cancel out. Since the denominator is 0 when x = −2, 2, we have vertical
asymptotes at x = −2 and x = 2. Writing using limits, we have

lim
x→−2−

f(x) DNE (−∞), lim
x→−2+

f(x) DNE (+∞),

and
lim
x→2−

f(x) DNE (−∞), lim
x→2+

f(x) DNE (+∞).

(b) Here, N = 3 and D = 3, and since N = D, there is a horizontal asymptote at y =
1

1
= 1.

We have
lim

x→−∞
f(x) = 1, lim

x→∞
f(x) = 1.

The denominator is 0 only when x3 = −1, or x = −1. Plugging −1 into the numerator,
we get (−1)3 − 1 = −2 6= 0, so we know nothing cancels. In this case, we have

lim
x→−1−

f(x) DNE (+∞), lim
x→−1+

f(x) DNE (−∞).

(c) Here, N = 2 and D = 2, and since N = D, there is a horizontal asymptote at y =
1

1
= 1.

We have
lim

x→−∞
f(x) = 1, lim

x→∞
f(x) = 1.

First, we factor, getting

f(x) =
(x− 2)(x+ 1)

(x− 1)(x+ 1)
=
x− 2

x− 1
.

Once we cancel, we see the denominator is 0 only when x = 1, which is where the vertical
asymptote is. We have

lim
x→1−

f(x) DNE (+∞), lim
x→1+

f(x) DNE (−∞).
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2. The vertical asymptote is at x = −1. So we make a brief chart getting close to −1 from the94

left and from the right.

x f(x)

−1.01 67.0044

−1.001 667.000

−0.99 −66.3378

−0.999 −666.334

Table 7.6: Looking at lim
x→−1−

f(x) and lim
x→−1+

f(x).

95

So from the left, we are tending toward (+∞), and from the right, we are tending toward96

(−∞).97

3. We make a brief chart with values of x to the left and to the right.

x f(x)

−100 1.0099

−1000 1.001

100 0.989899

1000 0.998999

Table 7.7: Looking at lim
x→−∞

f(x) and lim
x→∞

f(x).

98

So as x→ −∞, we see the values are a little bigger than 1, and so the graph approaches the99

asymptote from above. As x → ∞, we see the values are a little smaller than 1, and so the100

graph approaches the asymptote from below.101



176 Chapter 7 � Asymptotes and Infinity

7.2 Asymptotes and Limits at Infinity, II1

For the initial discussion, you will need to visit desmos.com.2

We start our discussion by looking at the growth of functions. For example, given f(x) = ex and3

g(x) = x2, we know that lim
x→∞

f(x) DNE (+∞) and lim
x→∞

g(x) DNE (+∞). In other words, both4

functions “blow up” as x→∞. Is there a way to tell which function blows up faster?5

Note: the different lines/functions in the desmos graph are labelled©1–©10.You can select/deselect6

by clicking on the circles to the left. When you open the graph, you should see©2 and©3 selected.7

The graph of f(x) = ex is shown. As you move the slider in ©1, you’ll graphs of g(x) = x,8

g(x) = x2, and so on, up to g(x) = x10. Once you hit g(x) = x3, it looks like the polynomial is9

“winning.” If you click on the wrench in the upper right and deselect “Lock Viewport,” you’ll be10

able to zoom out. If you do, you’ll notice it’s impossible to tell which function is growing faster.11

How can we use limits and calculus to see which function grows faster? One way is to look at the12

quotient of f(x) and g(x). In other words, we consider h(x) =
x2

ex
. Make sure that only ©3, ©4,13

and ©5 are selected. Click on the house icon in the upper right to reset the screen.14

Now make sure you can tell which graphs are f(x) = ex, g(x) = x2, and h(x) =
x2

ex
. From looking

at the graph, we might guess that
lim
x→∞

h(x) = 0.

How can we show this? When we looked at rational functions, we had a definite procedure to15

follow. When other functions are involved in the quotient, we use a method called L’Hôpital’s16

Rule. This method is used for quotients of the form “
±∞
±∞

,” which means the limits in the17

numerator and denominator do not exist, but tend towards positive or negative infinity – that is,18

the limits of the numerator and denominator are either DNE (+∞) or DNE (−∞). Here is the19

result.20

Suppose lim
x→a

f(x)

g(x)
is of the form

±∞
±∞

. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Here, a can be a number or ±∞.

21

Let’s see how we apply this here. We observed that lim
x→∞

x2 DNE (+∞) and lim
x→∞

ex DNE (+∞).

So the form is right for using L’Hôpital’s Rule. Thus,

lim
x→∞

x2

ex
LR
= lim

x→∞

2x

ex
,

where the notation “
LR
= ” means that the expressions are equal due to L’Hôpital’s Rule.22

https://www.desmos.com/calculator/jjr1xdbgkn
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Now you’ll notice that lim
x→∞

2x

ex
is still of the form

±∞
±∞

. So that means we’ll have to use L’Hôpital’s

Rule a second time. This is not unusual when using L’Hôpital’s Rule. Therefore,

lim
x→∞

2x

ex
LR
= lim

x→∞

2

ex
.

But now we observe that the numerator is always 2, but the denominator tends to +∞. Therefore,

lim
x→∞

x2

ex
LR
= lim

x→∞

2x

ex
LR
= lim

x→∞

2

ex
= 0.

So this means that h(x) =
x2

ex
does have a horizontal asymptote at y = 0. But only in the positive23

direction. From the graph, it appears that lim
x→−∞

DNE (+∞). This is because as x → −∞, the24

numerator x2 keeps getting larger and larger, while the denominator ex goes to 0. Recall that with25

rational functions, the function always approached the horizontal asymptote from both directions.26

As we see here, that is not necessarily the case if the quotient is not a rational function.27

Essentially, because we take derivatives on the numerator and denominator, L’Hôpital’s Rule is28

saying that to look at the ratio of two expressions tending to ±∞, we need to compare the rates29

at which these expressions tend to ±∞.30

Now that we have L’Hôpital’s Rule, it is important not to confuse it with the quotient rule. Re-31

member, to take the derivative of a quotient, you cannot just take the derivative of the numerator32

and the derivative of the denominator. But that’s exactly what you do when using L’Hôpital’s33

Rule.34

You can use L’Hôpital’s Rule to evaluate limits of the form
±∞
±∞

.

You cannot use L’Hôpital’s Rule when taking derivatives.

35
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Example 136

We can ask a similar question about f(x) = lnx and g(x) =
√
x. Make sure only ©6 and ©7 are

selected. It looks like g(x) is above f(x) when the home screen icon is clicked. But what about

lim
x→∞

lnx√
x

?

The logarithm is below the square root so far, but what happens later? If you select ©8 and zoom
out, it looks like this ratio could be 0, or perhaps a small number. We can use L’Hôpital’s Rule to
see just what happens, since for both graphs, lim

x→∞
f(x) DNE (+∞) and lim

x→∞
g(x) DNE (+∞).

lim
x→∞

lnx√
x

LR
= lim

x→∞

1/x

1/(2
√
x)
.

This is starting to look complicated, but when using L’Hôpital’s Rule (perhaps more than once),
it is important to simplify first. Thus,

1/x

1/(2
√
x)

=
1

x
· 2
√
x

1
=

2√
x
.

Then we see that lim
x→∞

2√
x

= 0, since the denominator goes to infinity while the numerator stays

at 2. Thus, we conclude that

lim
x→∞

lnx√
x

= 0.

Let’s see geometrically why this makes sense. Select ©3, ©4, ©6, and ©7 only. Notice that ex37

and lnx are inverse functions, as are x2 (for x ≥ 0) and
√
x. So if ex grows faster that x2 as x→∞,38

then when you reflect about the line y = x (this is how you transform a graph to get the graph of39

an inverse function), then lnx grows slower that
√
x.40
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Example 241

There is a second way we can apply L’Hôpital’s Rule. In the previous examples, we did so when42

the limit was of the form
±∞
±∞

. We can also use L’Hôpital’s Rule when the limit is of the form
0

0
.43

Said using limits, if we want to find lim
x→0

f(x)

g(x)
, and if both lim

x→0
f(x) = 0 and lim

x→0
g(x) = 0, then44

L’Hôpital’s Rule can be used.45

Let’s look at

lim
h→0

cos(h)− 1

h
.

We used this limit when we used the definition to find the derivative of sin(x). Let’s see how to46

find the limit using L’Hôpital’s Rule.47

Since cos(0) = 1, then lim
h→0

(cos(h)− 1) = 0, and of course lim
h→0

h = 0. This means the limit is of the

form
0

0
. So

lim
h→0

cos(h)− 1

h

LR
= lim

h→0

− sin(h)

1
= lim

h→0
(− sin(h)).

There is no longer a fraction involved, and sin(0) = 0, so this limit is 0; that is

lim
h→0

cos(h)− 1

h
= 0.

We did say how this could be shown numerically and graphically before, but we can verify it using48

L’Hôpital’s Rule.49
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Example 350

Now consider a similar limit,

lim
x→0

cos(x)− 1

x2
.

Like the previous example, we observe that this limit is of the form
0

0
. Therefore, we may apply

L’Hôpital’s Rule:

lim
x→0

cos(x)− 1

x2
LR
= lim

x→0

− sin(x)

2x
.

No need to simplify here, but we need to check what form the limit is. Again, we see that it is of

the form
0

0
, so we can apply L’Hôpital’s Rule again.

lim
x→0

− sin(x)

2x

LR
= lim

x→0

− cos(x)

2
.

This time around, nothing is 0, so we can just plug in x = 0 here, so

lim
x→0

cos(x)− 1

x2
= −1

2
.

What does it mean that we’ve calculated this limit? This means that very near 0,
cos(x)− 1

x2
is

approximately −1

2
, which we write as

cos(x)− 1

x2
≈ −1

2
.

Now let’s “solve” this for cos(x) as follows.

cos(x)− 1

x2
≈ −1

2

cos(x)− 1 ≈ −1

2
· x2

cos(x) ≈ 1− x2

2
.

Now go back to desmos, and make sure only ©9 and ©10 are selected. If you go back to the home51

screen, you’ll see that these functions look very different. But as you zoom in around x = 0, you52

should notice some interesting behavior. The graphs seem to get closer and closer together, and if53

you zoom in far enough, you can’t tell the difference between the two – they look like they’re on54

top of each other. They only intersect at x = 0, but there’s no way to tell this using your computer.55

It doesn’t have good enough resolution for that.56

The point is that we discovered that y = 1 − x2

2
is a very good approximation to y = cos(x) by57

using L’Hôpital’s Rule. Finding approximations is such an important application of calculus that58

one-third of Calculus II is devoted to this topic. We can only scratch the surface here. But as these59

examples show, using L’Hôpital’s Rule is yet another way to study the behavior of graphs.60
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Summary of L’Hôpital’s Rule:61

Suppose lim
x→a

f(x)

g(x)
is of the form

±∞
±∞

or of the form
0

0
. Then

L’Hôpital’s Rule tells us that

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Here, a can be a number or ±∞. L’Hôpital’s Rule can never be used

to evaluate a derivative!

62
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In-Class Practice/Homework63

For each of the limits below, decide whether you would be able to apply L’Hôpital’s Rule to evaluate.64

Do not evaluate the limits now. For homework, evaluate all the limits where L’Hôpital’s Rule may65

be applied.66

1. lim
x→∞

ex

x3 + 1
67

2. lim
x→−∞

ex

x3 + 1
68

3. lim
x→∞

x+ 2

x2 − 4
69

4. lim
x→2

x+ 2

x2 − 4
70

5. lim
x→∞

lnx

e−x
71

6. lim
x→0

sin(x)

x2 + x
72

7. lim
x→−∞

sin(x)

x2 + x
73

8. lim
x→π

sin(x)

1 + cos(x)
74

9. lim
x→0

sin(x)

1 + cos(x)
75

10. lim
x→1

√
x− 1

x2 − 1
76

11. lim
x→∞

√
x− 1

x2 − 1
77

12. lim
x→−∞

√
x− 1

x2 − 1
78

13. lim
x→∞

ln(lnx))

x2 + 1
79

14. lim
x→∞

e−x

x2
80

15. lim
x→−∞

e−x

x2
81
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Solutions82

1. The limit is of the form
∞
∞
.

lim
x→∞

ex

x3 + 1

LR
= lim

x→∞

ex

3x2
LR
= lim

x→∞

ex

6x

LR
= lim

x→∞

ex

6
DNE (+∞).

2. The limit is of the form
0

−∞
, so L’Hôpital’s Rule does not apply.83

3. The limit is of the form
∞
∞
.

lim
x→∞

x+ 2

x2 − 4

LR
= lim

x→∞

1

2x
= 0.

4. The limit is of the form
4

0
, so L’Hôpital’s Rule does not apply.84

5. The limit is of the form
∞
0
, so L’Hôpital’s Rule does not apply.85

6. The limit is of the form
0

0
.

lim
x→0

sin(x)

x2 + x

LR
= lim

x→0

cos(x)

2x+ 1
= 1.

7. The function y = sin(x) oscillates continuously between −1 and 1, and so has no limit as86

x→∞. So L’Hôpital’s Rule cannot be used.87

8. The limit is of the form
0

0
.

lim
x→π

sin(x)

1 + cos(x)

LR
= lim

x→π

cos(x)

− sin(x)
DNE .

9. The limit is just
0

2
= 0. You can just plug in here, and since the denominator tends to 2,88

L’Hôpital’s Rule cannot be applied.89

10. The limit is of the form
0

0
.

lim
x→1

√
x− 1

x2 − 1

LR
= lim

x→1

1/(2
√
x)

2x
= lim

x→1

1

4x
√
x

=
1

4
.

11. The limit is of the form
∞
∞
.

lim
x→∞

√
x− 1

x2 − 1

LR
= lim

x→∞

1/(2
√
x)

2x
= lim

x→∞

1

4x
√
x

= 0.

12.
√
x is not defined for negative values of x, so this limit is not defined and cannot be evaluated90

by any method.91
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13. The limit is of the form
∞
∞
. To find the derivative of ln(lnx), you’ll need the Chain Rule with

f(x) = ln(x) and g(x) = ln(x).

lim
x→∞

ln(lnx)

x2 + 1

LR
= lim

x→∞

1

lnx
· 1

x
2x

= lim
x→∞

1

2x2 lnx
= 0.

14. The limit is of the form
0

∞
, so L’Hôpital’s Rule cannot be applied.92

15. The limit is of the form
∞
∞
.

lim
x→−∞

e−x

x2
LR
= lim

x→−∞

−e−x

2x

LR
= lim

x→−∞

e−x

2
DNE (+∞).
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7.3 Asymptotes and Limits at Infinity, III1

We saw that lim
x→∞

x2

ex
= 0, which meant that ex grows much faster than x2 as x → ∞. There is2

nothing special about the exponent of “2,” and in fact, we have:3

lim
x→∞

xn

ex
= 0, n > 0.

4

It is very important to realize that this faster growth is as x→∞. To see why, go to desmos.com.5

We will look at the horizontal asymptotes of f(x) =
x

x+ ex
.6

Looking as x→∞, we see that this limit is of the form
∞
∞
, and so we may apply L’Hôpital’s Rule.

lim
x→∞

x

x+ ex
LR
= lim

x→∞

1

1 + ex
= 0.

We can observe this visually on the graph. It also makes sense, since ex grows faster than x, and7

the ex is in the denominator.8

Looking at x → −∞, we see that this limit is of the form
−∞
−∞

. This is because lim
x→−∞

ex = 0,

meaning the x is the dominant term in the denominator. So for x far to the left,

x

x+ ex
≈ x

x
= 1.

We can also see this using L’Hôpital’s Rule:

lim
x→−∞

x

x+ ex
LR
= lim

x→−∞

1

1 + ex
=

1

1 + 0
= 1.

Thus, as we look to the left, we see a horizontal asymptote at y = 1. We summarize these observa-9

tions.10

Suppose n > 0. Then:

1. as x→∞, ex dominates xn, and

2. as x→ −∞, xn dominates ex (if xn is well-defined).

11

By well-defined, we mean that xn exists. For example, when x < 0, x1/2 =
√
x is not defined, but12

x1/3 = 3
√
x is defined.13

We could undertake a similar investigation with lnx, but suffice it to say that14

https://www.desmos.com/calculator/p4bj1dzzl5


186 Chapter 7 � Asymptotes and Infinity

lim
x→∞

lnx

xn
= 0, n > 0.

15

Exponentials and Logarithms16

We’ve compared powers of x to ex and lnx, but what about other bases? Remember, lnx = loge x.
For example, what about

lim
x→∞

x2

2x
?

If we want to use L’Hôpital’s Rule, we need to be able to take the derivative of h(x) = 2x. To do
this, we observe that since ex and lnx are inverse functions, then 2 = eln 2. This means that

2x =
(
eln 2

)x
= e(ln 2)x.

So we can write h(x) as f(g(x)), where f(x) = ex and g(x) = (ln 2)x. Then f ′(x) = ex and
g′(x) = ln 2. Using the chain rule, we have

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

= eg(x) ln 2

= e(ln 2)x ln 2

= 2x ln 2.

Now we can use this in L’Hôpital’s Rule.

lim
x→∞

x2

2x
LR
=

2x

2x ln 2

LR
=

2

2x(ln 2)(ln 2)
= 0.

We can see this by looking at the graphs in desmos. So as long as the base is larger than 1 (or else the17

exponential function is decreasing), these quotients behave similarly. Since the same calculations18

work for any base:19

Suppose b > 1 and n > 0. Then:

1.
d

dx
bx = bx ln b,

2. lim
x→∞

xn

bx
= 0,

3. as x→∞, bx dominates xn, and

4. as x→ −∞, xn dominates bx (if xn is well-defined).

20

Logarithms can also occur in other bases, as in

lim
x→∞

log2 x√
x
.

We can tackle limits like these by remembering the change of base formula for logarithms:21
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Suppose b, c > 0. Then for any other base
a > 1,

logb c =
loga c

loga b
.

22

Why this helps is that we know all about the base e. So we can use a = e in the change of base23

formula, giving24

Suppose b, c > 0. Then

logb c =
ln c

ln b
.

25

Let’s use this to take the derivative of p(x) = log2 x. Remember that ln 2 is just a constant.

p(x) = log2 x

=
lnx

ln 2

p′(x) =
1

x ln 2

Now we can use this to evaluate our limit. Note that it is of the form
∞
∞
.

lim
x→∞

log2 x√
x

LR
= lim

x→∞

1

x ln 2
1

2
√
x

= lim
x→∞

1

x ln 2
· 2
√
x

1
= lim

x→∞

2√
x ln 2

= 0.

The same calculations work for any base, so:26

Suppose b > 1 and n > 0. Then:

1.
d

dx
logb x =

1

x ln b,

2. lim
x→∞

logb x

xn
= 0, and

3. as x→∞, xn dominates logb x.

27

L’Hôpital’s Rule Disguised28

Now we’ll look at some example of limits which, although not of the form that allows us to apply29

L’Hôpital’s Rule, they can be rewritten so L’Hôpital’s Rule can be applied. The idea is similar to30

when we rewrote
1

x4
as x−4 so we could use the Power Rule instead of the Quotient Rule. Best to31

start with an example.32
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Find lim
x→∞

(x+ 1)e−3x. The difficulty with limits like these is that one part blows up, and the other33

goes to 0. Here, lim
x→∞

(x+ 1) DNE (+∞) and lim
x→∞

e−3x = 0. We need to see what one “wins.” We34

call this type of limit “0 · ∞” or “∞ · 0.”35

But isn’t 0 times anything equal to 0? Yes, if that anything is a number. But ∞ is not a number,
but represents numbers getting larger than larger. Below are three limits of the form ∞ · 0.

lim
x→∞

x · 1

x2
= lim

x→∞

1

x
= 0,

lim
x→∞

x · 1

x
= lim

x→∞
1 = 1,

lim
x→∞

x2 · 1

x
= lim

x→∞
x DNE (+∞).

So a limit of the form ∞ · 0 can be 0, a nonzero number, or might not even exist. So you can’t36

automatically say it’s 0.37

So what can we do? Remember, a negative exponent lets us move an expression to the denominator.
So

lim
x→∞

(x+ 1)e−3x = lim
x→∞

x+ 1

e3x
.

Now it is of the form
∞
∞
, so L’Hôpital’s Rule can be applied.

lim
x→∞

x+ 1

e3x
LR
= lim

x→∞

1

3e3x
= 0.

Let’s try another: lim
x→0+

x lnx. As you can see in the desmos notebook, this limit should be 0, but

we’ll use calculus to show it. This limit is of the form 0 · ∞. Note that 0+ is needed since lnx is
not defined for x ≤ 0. There’s no negative exponent here, so we have two options:

lim
x→0+

x lnx = lim
x→0+

x

1/ lnx
= lim

x→0+

lnx

1/x
.

The last two limits are of the form
∞
∞
. Which one should we try? Let’s take them one at a time.

For the first, we’ll need to take the derivative of (lnx)−1, so let’s use the Chain Rule first before

applying L’Hôpital’s Rule. We write h(x) = (lnx)−1 as f(g(x)), where f(x) =
1

x
= x−1 and

g(x) = lnx. So f ′(x) = −x−2 and g′(x) =
1

x
.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

= −(g(x))−2 · 1

x

= −(lnx)−2 · 1

x

= − 1

x(lnx)2
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Therefore,

lim
x→0+

x

1/ lnx

LR
=

1

− 1

x(lnx)2

= lim
x→0+

−x(lnx)2

The problem? This limit is still of the form 0 · ∞. And instead of a lnx, we have a (lnx)2, which
seems to make the problem worse. So let’s try the other way.

lim
x→0+

lnx

1/x

LR
= lim

x→0+

1

x

− 1

x2

= lim
x→0+

1

x
· −x

2

1
= lim

x→0+
(−x) = 0.

You’ll notice that the first way only made the problem harder, but the second way wasn’t too38

difficult. So how do you decide? The rule of thumb is that if you have a limit like this involving39

lnx, just leave the lnx where it is, and move the other term.40
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Homework41

1. Find the derivatives of the following functions.42

(a) h(x) = 5x43

(b) h(x) = log3 x44

(c) h(x) = log2(x
2 + 1)45

(d) h(x) = 43x+1
46

(e) h(x) = log5(x
25x)47

2. Find the following limits.48

(a) lim
x→∞

e−3x lnx49

(b) lim
x→∞

4x

3x
50

(c) lim
x→−∞

4x

3x
51

(d) lim
x→−∞

e2xx252

(e) lim
x→0+

x2 lnx53
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Solutions54

1. (a) h′(x) = 5x ln 555

(b) h′(x) =
1

x ln 3
56

(c) Use the Chain Rule with f(x) = log2 x and g(x) = x2 + 1. Then f ′(x) =
1

x ln 2
and

g′(x) = 2x. Therefore,

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

g(x) ln 2
· 2x

=
2x

(x2 + 1) ln 2

(d) Use the Chain Rule with f(x) = 4x and g(x) = 3x+1. Then f ′(x) = 4x ln 4 and g′(x) = 3.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

= 4g(x)(ln 4) · 3
= 3 · 43x+1 ln 4

(e) Use rules of logarithms to simplify first.

f(x) = log5(x
25x) = log5(x

2) + log5(5
x) = 2 log5(x) + x.

Then

h′(x) =
2

x ln 5
+ 1.

2. (a) This limit is of the form 0 · ∞. Rewrite and use L’Hôpital’s Rule.

lim
x→∞

e−3x lnx = lim
x→∞

lnx

e3x
LR
= lim

x→∞

1/x

3e3x
= lim

x→∞

1

3xe3x
= 0.

(b) This limit is of the form
∞
∞
. Using L’Hôpital’s Rule, we get

lim
x→∞

4x

3x
LR
= lim

x→∞

4x ln 4

3x ln 3
.

This is still of the form
∞
∞
, and using L’Hôpital’s Rule again will not help. But using

rules of exponents,
4x

3x
=

(
4

3

)x
.

So

lim
x→∞

(
4

3

)x
DNE (+∞),

since we are taking a number which is greater than 1 to larger and larger powers.57
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(c) This limit is of the form
0

0
. Using L’Hôpital’s Rule, we get

lim
x→−∞

4x

3x
LR
= lim

x→−∞

4x ln 4

3x ln 3
.

This is still of the form
0

0
, and using L’Hôpital’s Rule again will not help. But using

rules of exponents,
4x

3x
=

(
4

3

)x
.

So

lim
x→−∞

(
4

3

)x
= 0,

since we are taking a number which is greater than 1 to more negative powers.58

(d) This limit is of the form 0 · ∞. So we rewrite as

lim
x→−∞

x2

e−2x
LR
= lim

x→−∞

2x

−2e−2x
LR
= lim

x→∞

2

4e−2x
= 0.

(e) This limit is of the form 0 · ∞. We move the x2 term.

lim
x→0+

lnx

x−2
LR
= lim

x→0+

1/x

−2x−3
= lim

x→0+

1/x

−2/x3
= lim

x→0+

1

x
· −x

3

2
= lim

x→0+

−x2

2
= 0.



Section 7.4 � Summary of Limits in Calculus 193

7.4 Summary of Limits in Calculus1

We used limits at various different points so far. They were necessary to define the derivative. We2

also used them to define what it means to be continuous or discontinuous, which includes essential3

and removable discontinuites. Then we used limits to describe the behavior of the graph of a4

function at horizontal and vertical asymptotes. Here, we summarize all the important points.5

The limit of f(x) as x
approaches a from the left:

lim
x→a−

f(x)

y

x
a

Used for:

1. Determining continuity,

2. Describing discontinuities,

3. Describing behavior at an
asymptote.

The limit of f(x) as x
approaches a from the right:

lim
x→a+

f(x)

y

x
a

Used for:

1. Determining continuity,

2. Describing discontinuities,

3. Describing behavior at an
asymptote.

The limit of f(x) as x
approaches a : lim

x→a
f(x).

Only exists if

lim
x→a−

f(x) = lim
x→a+

f(x).

y

x

y

x
a

Used for:

1. Determining continuity,

2. Describing discontinuities.

6
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The limit of f(x) as x
approaches infinity:

lim
x→∞

f(x)

.

y

x

y

x

Used for:

1. Determining a horizontal
asymptote to the right.

The limit of f(x) as x
approaches negative infinity:

lim
x→−∞

f(x)

.

y

x

Used for:

1. Determining a horizontal
asymptote to the left.

The derivative of f(x) :

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

x

Used for:

1. Determining the slope of
the tangent line.

Note that the h must cancel
somehow.

7
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Evaluating Limits8

There are many ways to evaluate limits. Let’s summarize the ones we encounter most often.9

In ALL cases where the limit DNE (does not exist), you must do additional work to see if the limit10

DNE (−∞), DNE (+∞), or just DNE (for example, when a function approaches an asymptote in11

opposite directions).12

1. Sometimes you can just plug in. The commonly occurs when using the definition of the13

derivative. You can’t plug in right away, since you get
0

0
. But once the h cancels out, you14

can usually just plug in.15

2. When the limit involves a quotient, there are two primary methods.16

(a) If the limit is the limit of x→ ±∞ of a rational function f(x) (numerator and denomi-17

nator are polynomials), and if N is the degree of the numerator and D is the degree of18

the denominator, then:19

i. If N < D, then lim
x→−∞

f(x) = lim
x→∞

f(x) = 0;20

ii. If N = D, then lim
x→−∞

f(x) = lim
x→∞

f(x) is the ratio of the leading coefficients of the21

numerator and the denominator;22

iii. If N > D, then lim
x→−∞

f(x) and lim
x→∞

f(x) DNE.23

(b) If the quotient does not involve a rational function, then evaluate using the following24

chart, where LR stands for L’Hôpital’s Rule. Again, DNE can also mean DNE (−∞) or25

DNE (+∞), but more work usually has to be done to determine if one of these applies.26

Here, “ 6= 0” means not 0, but also not ±∞.27

num

den
0 6= 0 ±∞

0

6= 0

±∞

LR DNE DNE

0 plug in DNE

0 0 LR

28
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3. When the limit involves a product, such as lim
x→a

f(x)g(x), where a can be a number or ±∞,29

you can often just plug in. If not, use the following chart. Here, the label “f(x)” means30

what lim
x→a

f(x) is, and “g(x)” means what lim
x→a

g(x) is. LR means that you have to rewrite31

the product as a quotient and use L’Hôpital’s Rule. Two rules of thumb:32

(a) Move a term with a negative exponent to the denominator;33

(b) Leave a logarithm on the numerator.34

In all other cases, take your best guess. Remember, if you rewrite

lim
x→a

f(x)g(x) = lim
x→a

f(x)
1

g(x)

,

you have to take the derivative of
1

g(x)
= (g(x))−1 using the Chain Rule. Try to determine35

which way to rewrite which will be easiest.36

f(x)

g(x)
0 6= 0 ±∞

0

6= 0

±∞

0 0 LR

0 plug in DNE

LR DNE DNE

37
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4. Some limits we just “know” and do not need to use the charts. They all just “make sense,”38

or we studied them in detail in class. Here, “n > 0” means any positive number, not just an39

integer.40

(a) lim
x→∞

xn DNE (+∞), where n > 0.41

(b) lim
x→−∞

xn DNE, where n > 0 and xn is well-defined.42

(c) lim
x→∞

1

xn
= 0, where n > 0.43

(d) lim
x→−∞

1

xn
= 0, where n > 0 and xn is well-defined.44

(e) lim
x→0+

1

xn
DNE (+∞), where n > 0.45

(f) lim
x→0−

1

xn
DNE, where n > 0 and xn is well-defined.46

(g) lim
x→∞

bx DNE (+∞), where b > 1.47

(h) lim
x→−∞

bx = 0, where b > 1.48

(i) lim
x→∞

lnx DNE (+∞).49

(j) lim
x→0+

lnx DNE (−∞).50

(k) lim
x→∞

xn

bx
= 0, where n > 0 and b > 1.51

(l) lim
x→∞

logb x

xn
= 0, where n > 0 and b > 1.52
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In-Class Practice/Homework53

When a limit DNE, determine whether it is DNE (+∞), DNE (−∞), or DNE.54

1. lim
x→−∞

1− 2x2

3x2 − 4x− 1
55

2. lim
x→2−

x2 + 1

x2 − 4
56

3. lim
x→2+

x2 + 1

x2 − 4
57

4. lim
x→2

x2 + 1

x2 − 4
58

5. lim
x→−∞

x4 − 2x− 6

x− 4
59

6. lim
x→∞

e−x lnx60

7. lim
x→0+

ex sin(x)61

8. lim
x→0−

x2

sin(x)
62

9. lim
x→0−

x2 + 1

sin(x)
63

10. lim
x→−∞

x5 lnx64

11. lim
x→∞

x5 lnx65

12. lim
x→0+

x5 lnx66

13. lim
x→∞

ex

x
.67

14. lim
x→∞

2x

ex
.68

15. lim
x→0−

sin(x)

tan(x)
.69
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Solutions70

1. This is a rational function with N = 2 and D = 2. Therefore, the limit is the ratio of the71

leading coefficients, −2

3
.72

2. The numerator approaches 5, while the denominator approaches 0. Thus, this limit DNE.73

Since the numerator is positive and the denominator is negative – plug in 1.99 to get 1.992−4 ≈74

−0.04 – the limit is DNE (−∞).75

3. The numerator approaches 5, while the denominator approaches 0. Thus, this limit DNE.76

Since the numerator is positive and the denominator is positive – plug in 2.01 to get 2.012−4 ≈77

0.04 – the limit is DNE (+∞).78

4. Based on the previous two answers, this limit is DNE, since the graph approaches the asymp-79

tote x = 2 from opposite directions.80

5. N = 4 and D = 1, so since N > D, this limit DNE. To see if it is DNE (+∞) or DNE (−∞),
we look at the highest degrees of the numerator and denominator here as x→ −∞. So

x4 − 2x− 6

x− 4
≈ x4

x
= x3.

Since the cube of a negative number is negative, this limit is DNE (−∞).81

6. This limit is of the form 0 · ∞. We move the negative exponent to the denominator and use
L’Hôpital’s Rule.

lim
x→∞

e−x lnx = lim
x→∞

lnx

ex
LR
= lim

x→∞

1

x
ex

= lim
x→∞

1

xex
= 0.

7. Here, we can just plug in. lim
x→0+

ex sin(x) = e0 sin(0) = 0.82

8. This limit is of the form
0

0
, so we can apply L’Hôpital’s Rule.

lim
x→0−

x2

sin(x)

LR
= lim

x→0−

2x

cos(x)
=

2 · 0
cos(0)

= 0.

9. The numerator goes to 1 and the denominator goes to 0, so this limit DNE. To see if it is83

DNE (+∞) or DNE (−∞), note that 1 is positive. Looking at a graph of y = sin(x), we see84

that coming to 0 from the left, sin(x) is negative. Since
+

−
= −, this limit is DNE (−∞).85

10. This limit is undefined, since lnx is not defined for negative numbers. It is important to86

point out that “undefined” is different that “DNE.” To say that a limit is undefined is to say87

that you can’t even evaluate it because the x-values don’t make sense for the functions in88

the limit. To say that a limit is DNE means the limit makes sense as far as the x-values are89

concerned, but there is no limiting value.90

11. This limit is of the form +∞ ·+∞, so this limit DNE (+∞).91
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12. This limit is of the form 0 · −∞, so we must rewrite and use L’Hôpital’s Rule. We keep the
logarithm on the numerator.

lim
x→0+

x5 lnx = lim
x→0+

lnx

x−5
LR
= lim

x→0+

1

x
−5x−6

· x
6

x6
= lim

x→0+

x5

−5
= 0.

13. We know that this limit DNE since ex dominates x. As x → ∞, this limit is of the form92

+

+
= +, so the limit is DNE (+∞).93

14. This limit is of the form
∞
∞
, but using L’Hôpital’s Rule won’t help because the exponential94

functions will still remain. But we can rewrite as lim
x→∞

(
2

e

)x
= 0. Since 2 < e, we are taking95

higher and higher powers of a number less than 1, so this limit is 0.96

15. This limit is of the form
0

0
, so it looks like a L’Hôpital’s Rule problem. But

sin(x)

tan(x)
=

sin(x)

sin(x)

cos(x)

=
sin(x)

1
· cos(x)

sin(x)
= cos(x),

so this limit is
lim
x→0−

cos(x) = 1.
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8.1 Tangents to Curves3

Up to this point, we used calculus and derivatives to look at properties of graphs of functions. But4

what about curves which are not graphs of functions? That is, curves that do not pass the vertical5

line test?6

A simple example is a circle, such as x2 + y2 = 9. There are two ways we can approach this. First,

y

x
−1 1

−1

1

(1.8, 2.4)

y =
√

9− x2

y = −
√

9− x2

Figure 8.1: Describing a circle using two functions.

we can solve for y and look at the top and bottom halves of the circle separately. Each half is
the graph of a function, as shown in Figure 8.1. Let’s find an equation for the tangent line at
(1.8, 2.4). We’ll use the Chain Rule with h(x) =

√
9− x2, using f(x) =

√
x and g(x) = 9− x2, and

so f ′(x) =
1

2
√
x

and g′(x) = −2x.

h(x) =
√

9− x2

h′(x) = f ′(g(x))g′(x)

=
1

2
√
g(x)

· (−2x)

= − 2x

2
√

9− x2

= − x√
9− x2

Plugging in x = 1.8, we get h′(1.8) = −0.75. To find an equation for the tangent line, we use the
point-slope formula.

y − y1 = m(x− x1)
y − 2.4 = −0.75(x− 1.8)

y − 2.4 = −0.75x+ 1.35

y = −0.75x+ 3.75

y = −1

4
x+

15

4
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What made this problem a lot of work was having to work with the square root. It turns out there
is an easier way using a method called implicit differentiation. If we start with y = f(x) and

take the derivative, we get
dy

dx
= f ′(x). In other words, differentiate both sides:

y = f(x)

d

dx
y =

d

dx
f(x)

dy

dx
= f ′(x)

Now if we don’t have the graph of a function, we cannot use f ′(x). So when we perform implicit

differentiation, we use the notation
dy

dx
. Let’s begin with our original equation and differentiate

both sides:

x2 + y2 = 9

d

dx
x2 +

d

dx
y2 =

d

dx
9

2x+
d

dx
y2 = 0

Two of the terms are easy, but what do we do with
d

dx
y2? Here, we need the Chain Rule. Let’s

call p(x) = y2, so f(x) = x2 and g(x) = y. Then f ′(x) = 2x and g′(x) =
dy

dx
. So

p(x) = y2

p′(x) =
d

dx
y2

= f ′(g(x))g′(x)

= f ′(y)
dy

dx

= 2y
dy

dx

Let’s look at this for a moment:
d

dx
y2 = 2y

dy

dx
.

It looks like we differentiate y2 where y is the variable, and then multiply by
dy

dx
. Looking back at

the Chain Rule, that’s exactly what we did. So

d

dx
sin(y) = cos(y)

dy

dx
,

d

dx
ey = ey

dy

dx
,

d

dx
ln y =

1

y

dy

dx
,

and so on. Once we observe this pattern, we can skip the Chain Rule each time. But it’s important7

to see where the pattern comes from.8
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Going back, let’s substitute
d

dx
y2 = 2y

dy

dx
back in and solve for

dy

dx
.

2x+
d

dx
y2 = 0

2x+ 2y
dy

dx
= 0

2y
dy

dx
= −2x

dy

dx
=
−2x

2y

= −x
y

This is much simpler algebraically. Also notice that it is the same result, since because y =
√

9− x2,
then

−x
y

= − x√
9− x2

.

Also, the slope at (1.8, 2.4) is easier to find:

−x
y

= −1.8

2.4
= −3

4
.

So often, implicit differentiation can be much easier to use. Sometimes, it is impossible to solve for9

y, as we will see later, and then there is no other viable option.10
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Example 111

Consider the ellipse defined by x2 + xy+ y2 = 12, which you can see graphed at desmos.com. Give12

equations for the horizontal and vertical tangents to this curve.13

Implicit differentiation is very helpful here, since otherwise, we would need to use the quadratic

formula to solve for y, which would make the algebra really messy. So let’s first find
dy

dx
. We will

use the fact that
d

dx
y2 = 2y

dy

dx
from the last problem.

x2 + xy + y2 = 12

d

dx
x2 +

d

dx
xy +

d

dx
y2 =

d

dx
12

2x+
d

dx
xy + 2y

dy

dx
= 0

How do we handle
d

dx
xy? Here, we need the product rule. Since we’re using the notation

dy

dx
, let’s

rewrite the Product Rule first. Suppose h(x) = f(x)g(x).

h′(x) = f(x)g′(x) + g(x)f ′(x)

d

dx
h(x) = f(x)

d

dx
g(x) + g(x)

d

dx
f(x)

Now put h(x) = xy, with f(x) = x and g(x) = y, so that f ′(x) = 1 and g′(x) =
dy

dx
. Then

d

dx
h(x) =

d

dx
xy

= f(x)
d

dx
g(x) + g(x)

d

dx
f(x)

= x · dy
dx

+ y · 1

= x
dy

dx
+ y

Now let’s substitute back in and solve for
dy

dx
.

2x+
d

dx
xy + 2y

dy

dx
= 0

2x+ x
dy

dx
+ y + 2y

dy

dx
= 0

x
dy

dx
+ 2y

dy

dx
= −(2x+ y)

(x+ 2y)
dy

dx
= −(2x+ y)

dy

dx
=
−(2x+ y)

x+ 2y

https://www.desmos.com/calculator/yes0sq4uuc
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Let’s see how we use this to find horizontal and vertical tangents. For a horizontal tangent, we

need
dy

dx
= 0, and so the numerator of

dy

dx
must be 0. Then

−(2x+ y) = 0

2x+ y = 0

y = −2x

What does this mean? In desmos, make sure that the ellipse and the equation y = −2x are selected.
You can see immediately that they intersect at the points where there are horizontal tangents. So
these points must satisfy the equations:

x2 + xy + y2 = 12

y = −2x

So to find the points, we can substitute in and solve.

x2 + xy + y2 = 12

x2 + x(−2x) + (−2x)2 = 12

x2 − 2x2 + 4x2 = 12

3x2 = 12

x2 = 4

x = −2,+2

And since y = −2x, the two points where there are horizontal tangents are (−2, 4) and (2,−4), as14

we can see from looking at the graph.15

This looks like a lot of algebra – and it is. But the important point is that we’re not really using16

any new formulas, just applying old formulas in a new situation.17

What about the vertical tangents? A vertical tangent has undefined slope. This means the denom-

inator of
dy

dx
must be 0.

x+ 2y = 0

x = −2y

y = −1

2
x

In desmos, make sure that the ellipse and the equation y = −1

2
x are selected. You can see right

away that they intersect at the points where there are vertical tangents. So these points must
satisfy the equations:

x2 + xy + y2 = 12

x = −2y
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Notice that we use the equation in the form x = −2y. This is because to graph, we solve y = −1

2
x.

But to substitute, it’s easier not to have to worry about fractions.

x2 + xy + y2 = 12

(−2y)2 + (−2y)y + y2 = 12

4y2 − 2y2 + y2 = 12

3y2 = 12

y2 = 4

y = −2,+2

Since x = −2y, the two points where there are vertical tangents are (4,−2) and (−4, 2). We can18

see this from looking at the graph.19
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Example 2 Show that the curve described by the equation exy = x + y has a horizontal tangent20

at (0, 1) and a vertical tangent (1, 0).21

A graph of this equation is in the desmos notebook. You can see the plausibility of horizontal and22

vertical tangents at the points (0, 1) and (1, 0), respectively.23

We begin by taking derivatives on both sides, as with the other example.

exy = x+ y

d

dx
exy =

d

dx
x+

d

dx
y

d

dx
exy = 1 +

dy

dx

Now we need to deal with the
d

dx
exy term. First, we need to use Chain Rule. We use h(x) = exy,

so that f(x) = ex and g(x) = xy. Then f ′(x) = ex, and from the last example, we have
d

dx
g(x) =

d

dx
xy = x

dy

dx
+ y. Then

d

dx
exy = f ′(g(x))g′(x)

= eg(x) ·
(
x
dy

dx
+ y

)
= exy

(
x
dy

dx
+ y

)

Now let’s substitute back in and solve for
dy

dx
.

d

dx
exy = 1 +

dy

dx

exy
(
x
dy

dx
+ y

)
= 1 +

dy

dx

xexy
dy

dx
+ yexy = 1 +

dy

dx

xexy
dy

dx
− dy

dx
= 1− yexy

(xexy − 1)
dy

dx
= 1− yexy

dy

dx
=

1− yexy

xexy − 1

This seems like a lot of work, but there is no way to solve this equation for y. So here, implicit24

differentiation must be used.25
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Now let’s see how we use this to answer the question of tangents. Let’s find
dy

dx
at the point (0, 1).

dy

dx
=

1− yexy

xexy − 1

=
1− 1 · e0·1

0 · e0·1 − 1

=
1− 1

0− 1

= 0.

This means that there is a horizontal tangent at (0, 1). Let’s look at what happens at the point
(1, 0).

dy

dx
=

1− yexy

xexy − 1

=
1− 0 · e1·0

1 · e1·0 − 1

=
1− 0

1− 1

=
1

0
.

This slope is undefined, which means there is a vertical tangent at (1, 0).26
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Homework27

Note: Please do not jump straight to the Solutions if you are stuck. Go back and study the28

Examples, since each problem is similar to one of the Examples. You will have a problem on the29

next Exam of the form “Show that
dy

dx
= . . .” This means if you don’t get the answer right the30

first time, you’ll have to go back and recheck your computations. Practice doing this with the31

Homework so you can do well on that question.32

1. Consider the ellipse 4x2 + y2 = 8. Graph this on desmos.33

(a) Show that
dy

dx
= −4x

y
.34

(b) Find an equation of the tangent line at the point (−1, 2). Check you answer by graphing35

it on desmos as well.36

2. Graph the hyperbola xy = x+ y on desmos.37

(a) Show that
dy

dx
=

1− y
x− 1

.

(b) Find an equation of the tangent line when x = 2.38

(c) Find an equation of the tangent line when x = 0.39

3. Graph the hyperbola 2x2 − xy − y2 = 9 on desmos.40

(a) Show that
dy

dx
=

4x− y
x+ 2y

.

(b) Use this to find where there are vertical tangents to the hyperbola. Verify this on desmos.41
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Solutions42

1. (a) First, find
dy

dx
.

4x2 + y2 = 8

d

dx
4x2 +

d

dx
y2 =

d

dx
8

8x+ 2y
dy

dx
= 0

2y
dy

dx
= −8x

dy

dx
=
−8x

2y

= −4x

y

(b) At the point (−1, 2),

dy

dx
= −4x

y

= −4(−1)

2
= 2.

Using the point-slope equation of a line:

y − y1 = m(x− x1)
y − 2 = 2(x− (−1))

y − 2 = 2x+ 2

y = 2x+ 4
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2. (a) First, find
dy

dx
.

xy = x+ y

d

dx
xy =

d

dx
x+

d

dx
y

x
dy

dx
+ y = 1 +

dy

dx

x
dy

dx
− dy

dx
= 1− y

(x− 1)
dy

dx
= 1− y

dy

dx
=

1− y
x− 1

(b) Substituting x = 2, we have

2y = 2 + y

y = 2

So the slope of the line is
1− 2

2− 1
= −1.

Using the point-slope equation of a line:

y − y1 = m(x− x1)
y − 2 = −1(x− 2)

y − 2 = −x+ 2

y = −x+ 4

(c) Substituting x = 0, we have

0 · y = 0 + y

y = 0

So the slope of the line is
1− 0

0− 1
= −1.

Using the point-slope equation of a line:

y − y1 = m(x− x1)
y − 0 = −1(x− 0)

y = −x
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3. (a) First, find
dy

dx
.43

2x2 − xy − y2 = 9

d

dx
2x2 − d

dx
xy − d

dx
y2 =

d

dx
9

4x− xdy
dx
− y − 2y

dy

dx
= 0

−xdy
dx
− 2y

dy

dx
= −(4x− y)

−(x+ 2y)
dy

dx
= −(4x− y)

dy

dx
=
−(4x− y)

−(x+ 2y)

=
4x− y
x+ 2y

(b) There are vertical tangents when the denominator of
dy

dx
is 0.

x+ 2y = 0

x = −2y

It is easier to solve for x here to avoid fractions. Substitute this back in and solve for y.

2x2 − xy − y2 = 9

2(−2y)2 − (−2y)y − y2 = 9

8y2 + 2y2 − y2 = 9

9y2 = 9

y = −1,+1

We can find x since we know that x = −2y. So there are vertical tangents at the points44

(2,−1) and (−2, 1). This can be visually verified by looking at the graph.45
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8.2 Inverse Trigonometry I1

The most famous pair of inverse functions in calculus is ex and lnx. We learned a lot about lnx by2

reflecting ex across the line y = x. Also, it was very important that when we reflected across the3

line y = x, the graph passed the vertical line test, so we were able to define the function f(x) = lnx.4

Each x corresponded to exactly one y.5

To follow along, you will need to visit desmos.com. Trigonometric functions are also very important6

in calculus. But we can’t just reflect along the line y = x and be done with it. Let’s see why. We’ll7

start with sin(x), which you can see by selecting ©1. Now select ©2 and ©3, and you’ll see the8

graph of sin(x) reflected along the line y = x. Notice we literally switch the x and y from y = sin(x)9

to x = sin(y) to see the reflection.10

Now select ©4. You’ll notice that x = sin(y) does not pass the vertical line test, and so it is not a11

function. How can we create a function?12

If you select ©5, you see a small part of the graph of x = sin(y). This part does pass the vertical13

line test, and it is this part of the curve that we use to define the inverse function, arcsin(x).14

Many books write sin−1(x) for the inverse function, but this is confusing since you might think15

sin−1(x) =
1

sin(x)
. When you use arcsin(x), there is no confusion. Just note this in case you look16

at online resources.17

One big difference here. Since ex and lnx are inverse functions, y = ex means exactly the same18

thing as x = ln y. They are inverses of each other. But19

If y = sin(x), then it DOES NOT ALWAYS MEAN THAT x = arcsin(y).

20

This fact is what makes working with inverse trigonometric functions challenging. Consider ex and21

lnx again. Using interval notation, the domain of ex is (−∞,∞) and the range is (0,∞). The22

domain of ln(x) is (0,∞) while the range is (−∞,∞). Here, the domain and range just switch.23

But that can’t happen with sin(x), because when you reflect across y = x, you don’t get a function.24

Look back on desmos. Notice that the range of sin(x), [−1, 1], is the domain of arcsin(x). But the25

domain of sin(x), which is (−∞,∞), is not the range of arcsin(x), otherwise the vertical line test26

would fail. So the range of arcsin(x) is [−π/2, π/2], since if the range were made any larger, the27

graph would fail the vertical line test.28

Now select only ©1 and ©6. When you deselect ©1, you’ll notice that only one piece of sin(x)29

remains. This is called restricting the domain. Now select©2 and©5 again. When you reflect30

y = sin(x) with restricted domain, you get a function. So that means:31

If y = sin(x), and if x is in the restricted domain
[−π/2, π/2], then x = arcsin(y).

32

https://www.desmos.com/calculator/pe5pzxf3ek
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Another way of saying it is this. The domain of the restricted sin(x), which is [−π/2, π/2], is the33

range of arcsin(x). The range of the restricted sin(x), which is [−1, 1], is the same as the domain34

of arcsin(x).35

Also note that this is exactly how we defined
√
x. We had to restrict the domain of y = x2 to [0,∞)36

in order to get the inverse function. But we are so familiar with the square root function, we hardly37

notice. Inverse trigonometric functions are not so familiar.38

So, because 0, π/4, and −π/3 are all in the range of arcsin(x), then

arcsin(sin(0)) = 0, arcsin(sin(π/4)) = π/4, arcsin(sin(−π/3)) = −π/3.

But because π and 2π/3 are not in the range of arcsin(x), then

arcsin(sin(π)) 6= π, arcsin(sin(2π/3)) 6= 2π/3.

So we need a way to work these out. Who comes to the rescue? The unit circle, of course.39
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Example 1: arcsin(sin(x)).40

Sometimes it’s the case that arcsin(sin(x)) 6= x. arcsin(sin(2π/3)) 6= 2π/3, since 2π/3 is not in the41

range of arcsin(x). So how do we go about finding arcsin(sin(2π/3))?42

Let’s start with a unit circle.43

Range of arcsin(x):
[
−π

2
,
π

2

]
.

(
−1

2
,

√
3

2

)

2π

3

y =

√
3

2

Figure 8.2: Calculating arcsin(sin(2π/3)).

We need to find the appropriate angle in the range of arcsin(x) whose sine is the same as the sine44

of 2π/3.45

1. Draw a unit circle, and highlight (here in red) the range of arcsin(x).46

2. Since we’re looking for arcsin(sin(2π/3)), find the point on the unit circle corresponding to47

2π/3 and label the coordinates (blue dot on the left of Figure 8.9).48

3. Since sin(x) is the y-coordinate on the unit circle, draw a horizontal line through this point49

until in intersects the range of arcsin(x) (circled blue dot on the right).50

4. Find which angle in the range of arcsin(x),
[
−π

2
,
π

2

]
, corresponds to this point on the unit51

circle.52

5. Since sin(π/3) =
√

3/2, then arcsin(sin(2π/3)) = π/3.53

To summarize, we are essentially asking the question, “What angle in the range of arcsin(x) has54

the same sine as 2π/3?”55
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What about inverses of cos(x) and tan(x)? We won’t go into all the details here, since the basic56

concept is the same: restrict the domain so that when you reflect the graph, you get the graph57

of a function – that is, you pass the vertical line test. Select ©2 and ©7. When you reflect over58

y = x, you get ©8. If you select ©4 again, you’ll quickly notice that x = cos(y) does not pass the59

vertical line test. So, we restrict the domain of cos(x) to [0, π]. When you reflect y = cos(x) with60

this restricted domain, you get ©9. See this by selecting ©2, ©7, ©9, and ©10 only. When you61

deselect ©7, you’ll see only that part of y cos(x) with domain [0, π]. Then the inverse relationship62

is clear. This means that arccos(x) is the inverse of y = cos(x) with restricted domain [0, π]. Thus,63

If y = cos(x), and if x is in the restricted domain
[0, π], then x = arccos(y).

64

You’ll see how to find arccos(cos(x)) when x does not belong to the restricted domain in Example65

2. If x is in the restricted domain [0, π], then it will always be the case that arccos(cos(x)) = x.66

A similar thing happens with tan(x). You’ll see if you take y = tan(x) by selecting ©11, and67

reflecting about y = x by selecting ©2 and ©12, the reflection does not pass the vertical line test.68

But if we restrict the domain to (−π/2, π/2) (select ©2 and ©13 only) and reflect by selecting69

©14, the graph passes the vertical line test. It is important to note the parentheses: there are70

vertical asymptotes at x = −π/2 and x = π/2, since these points on the unit circle make vertical71

lines with the origin, and the slope of a vertical line is undefined.72

Thus,73

If y = tan(x), and if x is in the restricted domain
(−π/2, π/2) then x = arctan(y).

74

In other words, arctan(tan(x)) = x if x is in the restricted domain (−π/2, π/2). We’ll see in Example75

3 how to handle the situation if x is not in the restricted domain.76
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Example 2: arccos(cos(x)).77

Sometimes it’s the case that arccos(cos(x)) 6= x. arccos(cos(5π/4)) 6= 5π/4, since 5π/4 is not in the78

range of arccos(x). So how do we go about finding arccos(cos(5π/4))?79

Again, we start with a unit circle.80

Range of arccos(x): [0, π].

(
− 1√

2
,− 1√

2

)

5π

4

x = − 1√
2

Figure 8.3: Calculating arccos(cos(5π/4)).

We need to find the appropriate angle in the range of arccos(x) whose cosine is the same as the81

cosine of 5π/4.82

1. Draw a unit circle, and highlight (here in red) the range of arccos(x).83

2. Since we’re looking for arccos(cos(5π/4)), find the point on the unit circle corresponding to84

5π/4 and label the coordinates (blue dot on the left of Figure 8.3).85

3. Since cos(x) is the x-coordinate on the unit circle, draw a vertical line through this point86

until in intersects the range of arccos(x) (circled blue dot on the left).87

4. Find which angle in the range of arccos(x), [0, π], corresponds to this point on the unit circle.88

5. Since cos(3π/4) = −1/
√

2, then arccos(cos(5π/4)) = 3π/4.89

To summarize, we are essentially asking the question, “What angle in the range of arccos(x) has90

the same cosine as 5π/4?”91
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Example 3: arctan(tan(x)).92

Sometimes it’s the case that arctan(tan(x)) 6= x. arctan(tan(5π/6)) 6= 5π/6, since 5π/6 is not in93

the range of arctan(x). So how do we go about finding arctan(tan(5π/6))?94

Again, we start with a unit circle.95

Range of arctan(x):
(
−π

2
,
π

2

)
.(

−
√

3

2
,
1

2

)
5π

6

y = − 1√
3
x

Figure 8.4: Calculating arctan(tan(5π/6)).

We need to find the appropriate angle in the range of arctan(x) whose tangent is the same as the96

tangent of 5π/6.97

1. Draw a unit circle, and highlight (here in red) the range of arctan(x).98

2. Since we’re looking for arctan(tan(5π/6)), find the point on the unit circle corresponding to99

5π/6 and label the coordinates (blue dot on the left of Figure 8.4).100

3. Now

tan(5π/6) =
sin(5π/6)

cos(5π/6)
=

1/2

−
√

3/2
= − 1√

3
.

Since the sine corresponds to the y-coordinate and the cosine corresponds to the x-coordinate,101

then the tangent corresponds to
y

x
, which is the slope of the line through (−

√
3/2, 1/2) and102

the origin. Draw this line, and see where it intersects the range of arctan(x) (circled blue dot103

on the right).104

4. Find which angle in the range of arctan(x),
(
−π

2
,
π

2

)
, corresponds to this point on the unit105

circle.106

5. Since tan(−π/6) = −1/
√

3, then arctan(tan(5π/6)) = −π/6.107

To summarize, we are essentially asking the question, “What angle in the range of arctan(x) has108

the same tangent as 5π/6?”109
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So far, we’ve looked at how to evaluate arcsin(sin(x)), arccos(cos(x)), and arctan(tan(x)) for all110

x in the appropriate domain. What about the other way, that is, sin(arcsin(x)), cos(arccos(x)),111

and tan(arctan(x))? We saw that arcsin(sin(2π/3)) 6= 2π/3 because 2π/3 is not in the range of112

arcsin(x).113

Let’s think about what sin(arcsin(x)) means. The domain of arcsin(x) is [−1, 1]. So x must be in114

the range of sin(x), because the range of sin(x) is also [−1, 1]. This means that sin(arcsin(x)) = x115

for every x in the domain of arcsin(x), which is [−1, 1]. Said another way, any valid x you can plug116

into sin(arcsin(x)) will always be in the range of sin(x), and so sin(arcsin(x)) = x.117

The exact same logic shows that cos(arccos(x)) = x and tan(arctan(x)) = x for all valid values of118

x.119

The box below summarize all the important points. The tricky parts are 2(a), (b), and (c), where120

if x is not in the appropriate range, you have to work it out like Examples 1–3 above.121

1. (a) For y = arcsin(x), the domain is [−1, 1], range is
[
−π

2
,
π

2

]
.

(b) For y = arccos(x), the domain is [−1, 1], and the range is [0, π].

(c) For y = arctan(x), the domain is (−∞,∞) and the range is
(
−π

2
,
π

2

)
.

2. (a) arcsin(sin(x)) = x for all x in the range of arcsin(x).

(b) arccos(cos(x)) = x for all x in the range of arccos(x).

(c) arctan(tan(x)) = x for all x in the range of arctan(x).

3. (a) sin(arcsin(x)) = x for all x in the domain of arcsin(x).

(b) cos(arccos(x)) = x for all x in the domain of arccos(x).

(c) tan(arctan(x)) = x for all x in the domain of arctan(x).

122
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Homework123

1. What is a restricted domain, and why is it necessary to define the inverse trigonometric124

functions?125

2. Evaluate arccos(cos(5π/3)).126

3. Evaluate sin(arcsin(−
√

3/2)).127

4. Evaluate cos(arccos(3/2)).128

5. Evaluate arctan(tan(−π/4)).129

6. Evaluate arcsin(sin(7π/4)).130

7. Evaluate tan(arctan(−100)).131

8. Evaluate arccos(cos(−π)).132

9. Evaluate arctan(tan(5π/4)).133

10. Evaluate arcsin(sin(4π/3)).134
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135
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Solutions136

1. A restricted domain is when you restrict possible values for x. sin(x) is defined for all real137

numbers, but when using it to define arcsin(x), we restrict the domain to [−π/2, π/2]. We138

need to do this because when we reflect the graph of sin(x) across the line y = x, the graph139

does not pass the vertical line test.140

2. arccos(cos(5π/3)) = π/3, as demonstrated below.141

Range of arccos(x): [0, π].

(
1

2
,−
√

3

2

)

5π

3

x =
1

2

Figure 8.5: Calculating arccos(cos(5π/3)).

3. sin(arcsin(−
√

3/2)) = −
√

3/2, since sin(arcsin(x)) = x for all x in the domain of arcsin(x).142

4. cos(arccos(3/2)) is undefined because 3/2 is not in the domain of arccos(x).143

5. arctan(tan(−π/4)) = −π/4 because −π/4 is in the range of arctan(x).144
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6. arcsin(sin(7π/4)) = −π/4, as shown in the figure below. Note that 7π/4 looks like it lies in145

the range of arcsin(x), but we must convert to an angle in [−π/2, π/2], and so the answer is146

−π/4.147

Range of arcsin(x):
[
−π

2
,
π

2

]
.

(
1√
2
,− 1√

2

)

7π

4

Figure 8.6: Calculating arcsin(sin(7π/4)).

7. tan(arctan(−100)) = −100, because tan(arctan(x)) = x for all real numbers x.148

8. arccos(cos(−π)) = π, as shown in the figure below. Note that it looks like −π is in the range149

of arccos(x), but we must convert to an angle in the range of arccos(x), which is [0, π]. So the150

answer is π.

Range of arccos(x): [0, π].

(−1, 0)

π

Figure 8.7: Calculating arccos(cos(−π)).

151
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9. arctan(tan(5π/4)) = π/4, as shown in the figure below.

Range of arctan(x):
(
−π

2
,
π

2

)
.(

− 1√
2
,− 1√

2

)

5π

4

y = x

Figure 8.8: Calculating arctan(tan(5π/4)).

152

10. arcsin(sin(4π/3)) = −π/3, as shown in the figure below.

Range of arcsin(x):
[
−π

2
,
π

2

]
.

(
−1

2
,−
√

3

2

)

4π

3

y = −
√

3

2

Figure 8.9: Calculating arcsin(sin(4π/3)).

153
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8.3 Inverse Trigonometry II1

Derivative of arcsin(x).2

Now that we have a good understanding of the inverse trigonometric functions, it’s time to look at
their derivatives. We’ll be able to make some headway using implicit differentiation. Let’s start by
writing y = arcsin(x) as x = sin(y), always assuming that y is in the range of arcsin(x). Now use
implicit differentiation:

x = sin(y)

d

dx
x =

d

dx
sin(y)

1 = cos(y)
dy

dx
dy

dx
=

1

cos(y)

Now the question is: what do we do with cos(y)? Since arcsin(x) is a function of x, our derivative
should also be a function of x. Here, we use one of the Pythagorean Identities from trigonometry:
for any θ, sin2(θ) + cos2(θ) = 1. We’ll substitute y in for θ and solve.

sin2(y) + cos2(y) = 1

cos2(y) = 1− sin2(y)

cos2(y) = 1− x2 since x = sin(y)

cos(y) =
√

1− x2

dy

dx
=

1

cos(y)

dy

dx
=

1√
1− x2

We do have address the fact that we solved for cos(y) as +
√

1− x2 instead of −
√

1− x2. Recall that3

the graph of arcsin(x) is always increasing, which means its derivative always has to be positive.4

That’s why we could take the positive square root.5
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Derivative of arccos(x).6

We can use the same approach as we did for arcsin(x). But there is an easier way if we look at the7

right triangle in Figure 8.10.

x1

arccos(x) since
adj

hyp
=
x

1
= x.

arcsin(x) since
opp

hyp
=
x

1
= x.

Figure 8.10: Showing arcsin(x) + arccos(x) =
π

2
.

8

The angle at the upper right is arccos(x) because the cosine is
adj

hyp
, and the adjacent side relative to9

this angle is x and the hypotenuse is 1. Similarly, the angle at the bottom left is arcsin(x) because10

the sine is
opp

hyp
, and the opposite side relative to this angle is x and the hypotenuse is 1.11

Since the angles of a triangle add up to 180◦, and since there’s already a right angle, which is 90◦,
the other two angles must add up to 90◦. But in Calculus, we always use radians, and so

arcsin(x) + arccos(x) =
π

2
.

This helps because we can solve for arccos(x) and then use what we just learned.

arcsin(x) + arccos(x) =
π

2

arccos(x) =
π

2
− arcsin(x)

d

dx
arccos(x) =

d

dx

π

2
− d

dx
arcsin(x)

= 0− 1√
1− x2

= − 1√
1− x2
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Derivative of arctan(x).12

While we know that tan(x) =
sin(x)

cos(x)
, we do not have a similar formula for arctan(x). So we have

to use implicit differentiation again. We write x = tan(y), again assuming that y is in the range of
arctan(x).

x = tan(y)

d

dx
x =

d

dx
tan(y)

1 = sec2(y)
dy

dx
dy

dx
=

1

sec2(y)

Again, we need to change the y to x. We can start with the identity we used before, and divide by
cos2(θ).

sin2(θ) + cos2(θ) = 1

sin2(θ)

cos2(θ)
+

cos2(θ)

cos2(θ)
=

1

cos2(θ)

tan2(θ) + 1 = sec2(θ)

So let’s substitute this back in and simplify, using y instead of θ.

dy

dx
=

1

sec2(y)

=
1

tan2(y) + 1

=
1

x2 + 1
since x = tan(y)



Section 8.3 � Inverse Trigonometry II 229

Examples13

1. Find h′(x) if h(x) = x arctan(x).14

Here, we need the product rule with f(x) = x and g(x) = arctan(x).

h(x) = x arctan(x)

h′(x) = f(x)g′(x) + g(x)f ′(x)

= x · 1

x2 + 1
+ arctan(x) · 1

=
x

x2 + 1
+ arctan(x).

2. Find h′(x) if h(x) = arccos(x2).15

Use the Chain Rule, with f(x) = arccos(x) and g(x) = x2.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

= − 1√
1− (g(x))2

· 2x

= − 2x√
1− (x2)2

= − 2x√
1− x4

3. Find h′(x) if h(x) = arcsin(2x− 1). Simplify.16

Use the Chain Rule, with f(x) = arcsin(x) and g(x) = 2x− 1.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1√

1− (g(x))2
· 2

=
2√

1− (2x− 1)2

=
2√

1− (4x2 − 4x+ 1)

=
2√

4x− 4x2

=
2√

4
√
x− x2

=
1√

x− x2
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Homework17

1. If h(x) = x2 arcsin(x), find h′(x).18

2. If h(x) = arctan(2x+ 1), find h′(x).19

3. If h(x) = arccos(1− x), find h′(x).20

4. If arcsin(y) + y = x, find
dy

dx
.21

5. Note that lim
x→∞

1

x2 + 1
= 0. How does this relate to the horizontal asymptotes of the graph of22

y = arctan(x)?23

6. Find an equation of the tangent line to arccos(x) at x =

√
3

2
. Check with desmos. If you type24

“y=arccos(x)” into desmos, you’ll get the graph of y = arccos(x).25
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Solutions26

1. Use the Product Rule, with f(x) = x2 and g(x) = arcsin(x).

h(x) = f(x)g(x)

h′(x) = f(x)g′(x) + g(x)f ′(x)

= x2 · 1√
1− x2

+ arcsin(x) · 2x

=
x2√

1− x2
+ 2x arcsin(x)

2. Use the Chain Rule, with f(x) = arctan(x) and g(x) = 2x+ 1.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

=
1

(g(x))2 + 1
· 2

=
2

(2x+ 1)2 + 1

=
2

(4x2 + 4x+ 1) + 1

=
2

4x2 + 4x+ 2

=
2

2(2x2 + 2x+ 1)

=
1

2x2 + 2x+ 1

3. Use the Chain Rule, with f(x) = arccos(x) and g(x) = 1− x.

h(x) = f(g(x))

h′(x) = f ′(g(x))g′(x)

= − 1√
1− (g(x))2

· (−1)

=
1√

1− (1− x)2

=
1√

1− (1− 2x+ x2)

=
1√

2x− x2
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4. For this problem, we need to use implicit differentiation. After Step 3, we multiply through
by
√

1− y2 to eliminate fractions to make the algebra easier.

arcsin(y) + y = x

d

dx
arcsin(y) +

d

dx
y =

d

dx
x

1√
1− y2

dy

dx
+
dy

dx
= 1

dy

dx
+
√

1− y2 dy
dx

=
√

1− y2

(1 +
√

1− y2)dy
dx

=
√

1− y2

dy

dx
=

√
1− y2

1 +
√

1− y2

5. We know that y = arctan(x) has a horizontal asymptote at y =
π

2
. This means that as27

x→∞, the curve has to flatten out in order to approach the asymptote without crossing it.28

So as the curve flattens out, the slope of the tangent line gets closer and closer to 0.29

6. First, we find the slope of the tangent line by plugging in

√
3

2
into the derivative.

m = − 1√
1− (

√
3/2)2

= − 1√
1− 3/4

= − 1√
1/4

= − 1

1/2

= −2

Since arccos(
√

3/2) = π/6, we use the point (
√

3/2, π/6).

y − y1 = m(x− x1)
y − π/6 = −2(x−

√
3/2)

y − π/6 = −2x+
√

3

y = −2x+
√

3 + π/6
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8.4 Summary of Continuity and Differentiation1

As we did with limits, we’ll now summarize where continuity and differentiation are important in2

calculus.3

Continuity4

1. Graphs. Continuity is helpful in decribing features of graphs. If a is in the domain of a5

function f(x), we say that6

(a) f(x) has a removable discontinuity at a if both lim
x→a−

f(x) and lim
x→a+

f(x) exist and are7

equal, but f(a) is not equal to this value.8

(b) f(x) has an essential discontinuity at a if both lim
x→a−

f(x) and lim
x→a+

f(x) exist, but are9

not equal to each other.10

(c) f(x) is continuous at a if both lim
x→a−

f(x) and lim
x→a+

f(x) exist and are equal, and f(a)11

is equal to this value.12

(d) The function f(x) is continuous if it is continuous at all points a in the domain.13

y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

Figure 8.11: At x = 2 : Removable discontinuity (left), essential discontinuity (middle), continuous
(right).

See Section 6.1.14
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2. Intermediate Value Theorem (IVT). The Intermediate Value Theorem is usually stated15

as follows.16

Suppose f(x) is a continuous function defined on a closed interval [a, b]. If f(a) 6= f(b),
and if c is between f(a) and f(b), then there is some x0 in the open interval (a, b)
such that f(x0) = c.

17

We applied this by showing that two curves must intersect. The geometry is this: if the18

blue curve f(x) is above the red curve g(x) at one endpoint of a closed interval, and the red19

curve is above the blue curve at the other endpoint, they have to cross somewhere in middle,20

assuming the curves are continuous.

y

x
1 2 3 4

1

3

−1

2

y

x
1 2 3 4

1

3

−1

2

Figure 8.12: Continuous curves (left), at least one curve not continuous (right).

21

On the right in Figure 8.12, you can see that if the blue curve is above the red curve on the22

left, but below on the right, and one of the curves is not continuous, the curves do not have23

to intersect. But if both curves are continuous, they must intersect.24

How do we use the IVT to show this? Given the geometry of the curves, the function25

f(x)− g(x) must be negative at one endpoint and positive at the other. Since 0 lies between26

any negative and positive number, there is a point x0 in the interval where f(x0)−g(x0) = 0,27

which means f(x0) = g(x0). Therefore the curves intersect at x0.28

Details may be found in Section 6.4.29



Section 8.4 � Summary of Continuity and Differentiation 235

3. Extreme Value Theorem (EVT). The Extreme Value Theorem states:30

If a function is defined on a closed interval and is
continuous, both a global minimum and a global
maximum exist.

31

y

x
1 2

2

4

y

x
1 2

2

4

Figure 8.13: The importance of a closed interval (left), and continuiuty (right).

It is important that the interval is closed, since on the left of Figure 8.13, if the domain is32

(0, 2], you can have a vertical asymptote. And if the function is not continuous, you might33

have a vertical asymptote inside the interval, as shown on the right of Figure 8.13.34

How do you find global extrema? You have to look at values of the function where f ′(x) = 035

or where the derivative is undefined, and also at the endpoints. So this theorem involves both36

continuity and differentiation.37

See Sections 6.2 and 6.3.38
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Differentiation39

4. Finding rates of change. One important use of the derivative in all sciences is to find rates40

of change. We looked at a few primary examples. If you had a function of displacement in km41

as a function of time in hours, you would find the rate of change – which is just the velocity42

– in units of km/hr. You find the rate of change by taking the derivative of the function.43

Another example we looked is exponential growth of organisms. Bacteria in a Petri dish44

start to grow exponentially, but as the dish gets full, the growth rate slows down. But an45

exponential function is a good model for what happens at the beginning.46

The variable P (for population) is often used to describe exponential growth. When you47

take P ′(t), where t is in hours, you are finding a rate of change. That is, you’re looking at48

approximately how many bacteria per hour the population is growing. Again, you do this by49

taking the derivative and then plugging in your given value of t.50

P (bacteria)

t (hours)
1 2 3 4

1000

2000

3000

4000

5000

Figure 8.14: Graph of P (t) = 1000e0.4t.

More about exponential functions may be found in Section 5.1.51
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5. Finding equations of tangent lines. The rate of change is also the slope of a tangent line52

to the graph of a function. Given a point on a graph, we can use the derivative to find the53

slope of the tangent line, and then find an equation for the tangent line.54

y

x
−2 2

4

2

−2

−4

Figure 8.15: Tangent line on a graph.

See Section 2.3 for examples of finding equations of tangent lines.55

6. Find where a function is Increasing/decreasing. The derivative is also useful to find56

out where a function is increasing or decreasing. When f ′(x) > 0, the function is increasing,57

and when f ′(x) < 0, the function is decreasing (see Figure 8.16 (left)). When f ′(x) = 0, more58

work has to be done. In this case, there could be a local extremum, or the function could59

also be decreasing or increasing (as in Figure 8.16 (right)).60

y

x
−2 2

4

2

y

x
−2 2

4

2

Figure 8.16: Increasing on (−2,−1) and decreasing on (−1, 2) (left), and increasing when f ′(0) = 0
(right).

See Section 2.3 for a discussion of these ideas.61
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7. Determining concavity and finding points of inflection. Here, we need the second62

derivative. When f ′′(x) > 0, the graph is concave up (as in the left of Figure 8.17). When63

f ′′(x) < 0, the graph is concave down (see the middle of Figure 8.17). We do check when64

f ′′(x) = 0 to find inflection points, but more work is needed because there can also be a local65

minimum or maximum when f ′′(x) = 0 (as in the right of Figure 8.17). In this case, we either66

need a graph, or if we don’t have one, making a sign chart is necessary.67

y

x
−2 2

4

2

y

x
−2 2

4

2

y

x
2

4

2

Figure 8.17: Graph of f ′′(x) > 0 (left), f ′′(x) < 0 (middle), and f ′′(0) = 0 (right).

See Section 4.2.68

8. Finding local and global extrema. We find local extrema by solving f ′(x) = 0 or seeing69

where f ′(x) does not exist. When f ′(x) = 0, we can use the second derivative to see if the70

extremum is a minimum of maximum. If f ′′(x) > 0, the graph is concave up, and so it is a71

local minimum (see the left of Figure 8.18). If f ′′(x) < 0, the graph is concave down, and72

so it is a local maximum (middle of Figure 8.18). When f ′′(x) = 0, we need to make a sign73

chart, since it is possible there could be a local minimum (as in the right of Figure 8.18), a74

local maximum, or an inflection point.

y

x
−2 2

4

2

y

x
−2 2

4

2

y

x
2

4

2

Figure 8.18: Graph of f ′′(0) > 0 (left), f ′′(0) < 0 (middle), and f ′′(0) = 0 (right).

75

See Section 6.2 for more discussion about local extrema.76

See the Continuity section for a discussion of global extrema.77
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9. L’Hôpital’s Rule. Differentiation is needed to use L’Hôpital’s Rule, which is used when78

limits are of the form
±∞
±∞

,
0

0
, or ±∞ · 0. Suppose that f(x) and g(x) are functions, and a is79

either a real number or ±∞. Then80

(a) If f(x)→∞ (or −∞) and g(x)→∞ (or −∞) as x→ a, L’Hôpital’s Rule says that

lim
x→a

f(x)

g(x)

LR
= lim

x→a

f ′(x)

g′(x)
.

(b) If f(x)→ 0 and g(x)→ 0 as x→ a, L’Hôpital’s Rule says that

lim
x→a

f(x)

g(x)

LR
= lim

x→a

f ′(x)

g′(x)
.

(c) If one of f(x) and g(x) goes to 0 and the other goes to ±∞ as x→ a, you must rewrite81

by moving one of the function to the denominator and then applying L’Hôpital’s Rule.82

See Section 7.2 for a discussion of (a) and (b), and see Section 7.3 for a discussion of (c).83

10. Finding tangents to general curves. Many curves – like circles, ellipses, and hyperbolas84

are not graphs of functions because they fail the vertical line test. One such example is the85

ellipse x2 − 2xy + 2y2 = 9, shown below.86

87

In this case, we do not have a function y = f(x), but rather we say that y is defined implicitly.88

In such cases, we can use implicit differentiation to find
dy

dx
. Once we find

dy

dx
, we can use the89

derivative to find tangent lines, asymptotes, etc.90

See Section 8.1 for examples of how implicit differentiation is used.91
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Finding Derivatives92

Here is a summary of all the derivatives we know (that is, you can just use them at any time93

without justification), and the basic rules of differentiation.94

1.
d

dx
sin(x) = cos(x).95

2.
d

dx
cos(x) = − sin(x).96

3.
d

dx
tan(x) = sec2(x).97

4.
d

dx
ex = ex.98

5.
d

dx
lnx =

1

x
.99

6.
d

dx
bx = bx ln b.100

7.
d

dx
logb(x) =

1

x ln b
.101

8.
d

dx
arcsin(x) =

1√
1− x2

.102

9.
d

dx
arccos(x) = − 1√

1− x2
.103

10.
d

dx
arctan(x) =

1

x2 + 1
.104

11. The Power Rule: When n > 0,

d

dx
xn = nxn−1.

12. The Sum Rule:

d

dx
(f(x) + g(x)) = f ′(x) + g′(x).

13. The Difference Rule:

d

dx
(f(x)− g(x)) = f ′(x)− g′(x).

14. The Constant Multiple Rule:

d

dx
(cf(x)) = cf ′(x).

15. The Product Rule:

d

dx
f(x)g(x) = f(x)g′(x) + g(x)f ′(x).

16. The Quotient Rule:

d

dx

f(x)

g(x)
=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
.

17. The Chain Rule:

d

dx
f(g(x)) = f ′(g(x))g′(x).
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8.5 Calculus and Graphing1

Using calculus to study graphs has been a common theme throughout the course. We’ve looked at2

different aspects of graphs at different times. Here, we look at some examples and apply everything3

we’ve learned. We’ll look at polynomials and rational functions. For each graph, we will:4

1. Determine horizontal and vertical asymptotes, if any;5

2. Determine local minima and maxima, if any;6

3. Determine intervals where the function is increasing and decreasing;7

4. Determine inflection points, if any;8

5. Determine intervals on which the graph is concave up or concave down.9

We will not focus on the algebra of derivatives of rational functions – this can get hairy. So we’ll use10

software to calculate the derivatives for us. Also, we won’t discuss how to determine the information11

if you don’t have a graph. The idea is that you do have a graph – and any time you’d need a graph12

of a function in real life, you would use software. So the emphasis here is on describing various13

features of a graph using Calculus.14

We will be working with desmos.com to aid in our explorations.15

https://www.desmos.com/calculator/qnxhie5ais
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Example 116

Our first example is the polynomial f(x) = 3x5 − 5x3, which is ©1. The first two derivatives are:

f ′(x) = 15x4 − 15x2, f ′′(x) = 60x3 − 30x.

1. Asymptotes. We know that polynomials never have any asymptotes. Their behavior as17

x→ −∞ and x→∞ is determined by the highest degree term.18

2. Local Minima and Maxima. We need to solve f ′(x) = 0.

f ′(x) = 0

15x4 − 15x2 = 0

15x2(x2 − 1) = 0

15x2(x+ 1)(x− 1) = 0

x = −1, 0, 1

Since f ′′(−1) = −30 < 0, the graph is concave down at x = −1, so there is a local maximum
at (−1, 2). Since f ′′(1) = 30 > 0, the graph is concave up at x = 1, so there is a local minimum
at (1, 2). But at x = 0, we have f ′′(0) = 0, so we have to make a sign chart. This really
isn’t more work, since we need a sign chart to find out where the function is increasing and

decreasing. We take test points of −2, −1

2
,

1

2
, and 2. Evaluating:

f ′(−2) = 180, f ′
(
−1

2

)
= −45

16
, f ′

(
1

2

)
= −45

16
, f ′(2) = 180.

−1 0 1

+ − − +

19

So, since we are decreasing on both sides of x = 0, there is an inflection point at (0, 0). All20

this can be visually verified by looking at the graph.21

3. Intervals of Increase and Decrease. We’ve already created a sign chart for f ′(x), so22

we can read off the intervals where the graph is increasing and decreasing. The function is23

increasing on (−∞,−1) and (1,∞) since f ′(x) > 0 there, and decreasing on (−1, 1) since24

f ′(x) < 0 there.25

4. Inflection Points. To find possible inflection points, we solve f ′′(x) = 0.

f ′′(x) = 0

60x3 − 30x = 0

30x(2x2 − 1) = 0

x = 0

2x2 − 1 = 0

2x2 = 1

x2 =
1

2

x = − 1√
2
,

1√
2
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We know that there is an inflection point at (0, 0) from previous work. Since
1√
2
≈ 0.7, we

can make a sign chart with test points −1, −1

2
,

1

2
, and 1. Evaluating:

f ′′(−1) = −30, f ′′
(
−1

2

)
=

15

2
, f ′′

(
1

2

)
= −15

2
, f ′′(1) = 30.

− 1√
2

0 1√
2

− + − +

26

Since the concavity changes at −1/
√

2 and 1/
√

2, then there are inflection points at the points27

(−1/
√

2, 7/4
√

2) and (1/
√

2,−7/4
√

2). Since we want to visually inspect the graph, you can28

use a calculator to approximate these points as (−0.7, 1.2) and (0.7,−1.2). Or select ©2,29

which is the equation x =
1√
2
. If you zoom in on this point, you should be able to see that30

the concavity changes there.31

5. Intervals of Concavity. Since we have a sign chart for f ′′(x), we see that the graph32

is concave down on (−∞,−1/
√

2) and (0, 1/
√

2) (since f ′′(x) < 0 there), and the graph is33

concave up on (−1/
√

2, 0) and (1/
√

2,∞) (since f ′′(x) > 0 there).34

Assessment Expectations: For a problem like this, you would be given a graph and both the35

derivatives. You would only be asked to do one or two out of the five parts of the problem. You36

will need to make a sign chart for at least one of the parts.37
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Example 238

We now tackle the rational function f(x) =
x

x2 + 1
, which is ©3. The first two derivatives are:

f ′(x) =
1− x2

(x2 + 1)2
, f ′′(x) =

2x(x2 − 3)

(x2 + 1)3
.

1. Asymptotes. The degree of the numerator is N = 1 and the degree of the denominator is39

D = 2. Since N < D, we know that y = 0 is a horizontal asymptote.40

Note that the denominator is always positive. Since it can never be 0, there are no vertical41

asymptotes.42

2. Local Minima and Maxima. We need to solve f ′(x) = 0, so we set the numerator of f ′(x)
equal to 0.

1− x2 = 0

(1 + x)(1− x) = 0

x = −1, 1

Since f ′′(−1) = 1/2 > 0, the graph is concave up at x = −1, so there is a local minimum at43

(−1,−1/2). Since f ′′(1) = −1/2 < 0, the graph is concave down at x = 1, so there is a local44

maximum there at (1, 1/2). These points are easily visible on the graph.45

3. Intervals of Increase and Decrease. Since we didn’t need a sign chart for the local
extrema, we make one now. Easy test points are −2, 0, and 2. Evaluating:

f ′(−2) = − 3

25
, f ′(0) = 1, f ′(2) = − 3

25
.

−1 1

− + −

46

Now we can read off the intervals where the graph is increasing and decreasing. The function47

is increasing on (−1, 1) since f ′(x) > 0 there, and decreasing on (−∞,−1) and (1,∞) since48

f ′(x) < 0 there.49
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4. Inflection Points. To find possible inflection points, we set the numerator of f ′′(x) equal
to 0.

2x(x2 − 3) = 0

x = 0

x2 − 3 = 0

x2 = 3

x = −
√

3,
√

3

Since
√

3 ≈ 1.7, we can choose test points −2, −1, 1, and 2. Evaluating:

f ′′(−2) = − 4

125
, f ′′(−1) =

1

2
, f ′′(1) = −1

2
, f ′′(2) =

4

125
.

−
√

3 0
√

3

− + − +

50

Since the concavity changes at −
√

3, 0, and
√

3, then there are inflection points at the points51

(−
√

3,−
√

3/4), (0, 0), and (
√

3,
√

3/4). Since we want to visually inspect the graph, you can52

use a calculator to approximate two of these points as (−1.7,−0.4) and (1.7, 0.4). Or select53

©4, which is the equation x =
√

3. If you zoom in on this point, you should be able to see54

that the concavity changes there.55

5. Intervals of Concavity. Since we already have a sign chart for f ′′(x), we see that the56

graph is concave down on (−∞,−
√

3) and (0,
√

3) (since f ′′(x) < 0 there), and the graph is57

concave up on (−
√

3, 0) and (
√

3,∞) (since f ′′(x) > 0 there).58
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Example 359

We now explore the rational function f(x) =
x

x2 − 1
, which is ©5. The first two derivatives are:

f ′(x) = − x2 + 1

(x2 − 1)2
, f ′′(x) =

2x(x2 + 3)

(x2 − 1)3
.

1. Asymptotes. The degree of the numerator is N = 1 and the degree of the denominator is60

D = 2. Since N < D, we know that y = 0 is a horizontal asymptote.61

For vertical asymptotes, we set the denominator equal to 0.

x2 − 1 = 0

(x+ 1)(x− 1) = 0

x = −1, 1

So there are vertical asymptotes at x = −1 and x = 1. Looking at the graph, we describe the
behavior of the function at these asymptotes using limit notation:

lim
x→−1−

f(x) DNE (−∞), lim
x→−1+

f(x) DNE (+∞),

lim
x→1−

f(x) DNE (−∞), lim
x→1+

f(x) DNE (+∞).

2. Local Minima and Maxima. We need to solve f ′(x) = 0, so we set the numerator of f ′(x)
equal to 0.

x2 + 1 = 0

x2 = −1

Since x2 can never be negative, we see that there are no local extrema.62

3. Intervals of Increase and Decrease. To make a sign chart, we need to use the points
where f ′(x) = 0 or where the function is undefined. Note that in the previous examples, we
didn’t have to consider where the function was undefined since both were defined for all real
numbers. The only places where a rational function is undefined is where there are vertical
asymptotes, in this case, −1 and 1. Easy test points are −2, 0, and 2. Evaluating:

f ′(−2) = −5

9
, f ′(0) = −1, f ′(2) = −5

9
.

−1 1

− − −

63

Since f ′(x) is negative everywhere it’s defined, then the function is decreasing on (−∞,−1),64

(−1, 1), and (1,∞). It is important to note that you can’t just say the function is decreasing65

on (−∞,∞), since all real numbers includes −1 and 1, but the function is not defined at66

these points. So you have to write as three separate intervals.67
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4. Inflection Points. To find possible inflection points, we set the numerator of f ′′(x) equal
to 0.

2x(x2 + 3) = 0

x = 0

x2 + 3 = 0

x2 = −3 impossible

So the only possible inflection point is at x = 0. We make a sign chart, but again we must
include −1 and 1, since we have seen examples where the concavity changes as you hop over

a vertical asymptote. Easy test points are −2, −1

2
,

1

2
, and 2. Evaluating:

f ′′(−2) = −28

27
, f ′′

(
−1

2

)
=

208

27
, f ′′

(
1

2

)
= −208

27
, f ′′(2) =

28

27
.

−1 0 1

− + − +

68

Since the concavity changes at 0, then there is an inflection points at the point (0, 0). Concavity69

does change at x = −1 and x = 1, but the change is over an asymptote. Because f(x) is not70

defined when x = −1 and x = 1, these cannot correspond to inflection points.71

5. Intervals of Concavity. Since we already have a sign chart for f ′′(x), we see that the72

graph is concave down on (−∞,−1) and (0, 1) (since f ′′(x) < 0 there), and the graph is73

concave up on (−1, 0) and (1,∞) (since f ′′(x) > 0 there).74
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Homework75

Analyze the following functions as done above. The first one is fairly easy, so you can get a feel for76

working through the steps with minimal algebra. The second one is a little more involved. When77

working through these, make sure to include where the vertical asymptotes are when you make78

your sign charts!79

1. f(x) =
1

x
80

2. f(x) =
x2

x2 − 4
81

To help you out, the first two derivatives are

f ′(x) = − 8x

(x2 − 4)2
, f ′′(x) =

8(3x2 + 4)

(x2 − 4)3
.
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Solutions82

Problem 183

We are given that f(x) =
1

x
, which is ©6. Using the Power Rule, the first two derivatives are:

f ′(x) = −x−2 = − 1

x2
, f ′′(x) = −(−2)x−3 =

2

x3
.

1. Asymptotes. The degree of the numerator is N = 0 and the degree of the denominator is84

D = 1. Since N < D, we see that there is a horizontal asymptote at y = 0.85

For vertical asymptotes, we set the denominator equal to 0. So x = 0 is a vertical asymptote.
Looking at the graph, we describe the behavior of the function at the asymptotes using limit
notation:

lim
x→0−

f(x) DNE (−∞), lim
x→0+

f(x) DNE (+∞).

2. Local Minima and Maxima. We need to solve f ′(x) = 0, so we set the numerator of f ′(x)86

equal to 0. But the numerator is 1, and so can never be 0. So there are no local minima and87

maxima.88

3. Intervals of Increase and Decrease. To make a sign chart, we need to use the points
where f ′(x) = 0 or where the function is undefined. Thus, since f ′(x) is never 0, we just use
x = 0, the vertical asymptote. Easy test points are x = −1 and x = 1. Evaluating:

f ′(−1) = −1, f ′(1) = −1.

0

− −

89

Reading off the sign chart, we see that f(x) is decreasing when on (−∞, 0) and (0,∞), since90

f ′(x) < 0 there. Note that we cannot write this as (−∞,∞), since this interval includes 0,91

but the function is not defined there.92

4. Inflection Points. To find possible inflection points, we set the numerator of f ′′(x) equal93

to 0. But the numerator of f ′′(x) is 2, and so can never be 0. Thus, there are no inflection94

points.95
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5. Intervals of Concavity. There are no points where f ′′(x) = 0, so we use only x = 0,
which corresponds to the vertical asymptote, to make our sign chart. Easy test values are −1
and 1. Evaluating:

f ′′(−1) = −2, f ′′(1) = 2.

0

− +

96

Thus, the graph of f(x) is concave up on (0,∞) since f ′′(x) > 0 there, and concave down on97

(−∞, 0) since f ′′(x) < 0 there.98
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Problem 299

We are given that f(x) =
x2

x2 − 4
, which is ©7. The first two derivatives are:

f ′(x) = − 8x

(x2 − 4)2
, f ′′(x) =

8(3x2 + 4)

(x2 − 4)3
.

1. Asymptotes. The degree of the numerator is N = 2 and the degree of the denominator100

is D = 2. Since N = D, we take the ratio of the leading coefficients of the numerator and101

denominator – both 1 in this case – to get the horizontal asymptote y =
1

1
= 1.102

For vertical asymptotes, we set the denominator equal to 0.

x2 − 4 = 0

(x+ 2)(x− 2) = 0

x = −2, 2

So there are vertical asymptotes at x = −2 and x = 2. Looking at the graph, we describe the
behavior of the function at these asymptotes using limit notation:

lim
x→−2−

f(x) DNE (+∞), lim
x→−2+

f(x) DNE (−∞),

lim
x→2−

f(x) DNE (−∞), lim
x→2+

f(x) DNE (+∞).

2. Local Minima and Maxima. We need to solve f ′(x) = 0, so we set the numerator of f ′(x)
equal to 0.

−8x = 0

x = 0

Since f ′′(0) = −1

2
, the graph is concave down at x = 0. Thus, there is a local maximum at103

(0, 0).104
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3. Intervals of Increase and Decrease. To make a sign chart, we need to use the points
where f ′(x) = 0 or where the function is undefined. Thus, we use x = 0, (just calculated),
and the vertical asymptotes −2 and 2. Easy test points are −3, −1, 1, and 3. Evaluating:

f ′(−3) =
24

25
, f ′(−1) =

8

9
, f ′(1) = −8

9
, f ′(3) = −24

25

−2 0 2

+ + − −

105

Reading off the sign chart, we see that f(x) is increasing when on (−∞,−2) and (−2, 0), since106

f ′(x) > 0 there. Note that we cannot write this as (−∞, 0), since this interval includes −2,107

but the function is not defined there. The function is decreasing on (0, 2) and (2,∞) since108

f ′(x) < 0 there. Again, two separate intervals are needed.109

4. Inflection Points. To find possible inflection points, we set the numerator of f ′′(x) equal
to 0.

8x(32 + 4) = 0

3x2 + 4 = 0

3x2 = −4

x2 = −4

3
impossible

Since x2 can never be negative, there are no inflection points.110

5. Intervals of Concavity. There are no points where f ′′(x) = 0, so we use only −2 and
2, which correspond to the vertical asymptotes, to make our sign chart. Easy test values are
−3, 0, and 3. Evaluating:

f ′′(−3) =
248

125
, f ′′(0) = −1

2
, f ′′(3) =

248

125
.

−2 2

+ − +

111

Thus, the graph of f(x) is concave up on (−∞,−2) and (2,∞) since f ′′(x) > 0 there, and112

concave down on (−2, 2) since f ′′(x) < 0 there.113
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8.6 Related Rates1

We will look at another important application of implicit differentiation. Recall that in Section 8.1,
we used this technique to find slopes of tangent lines to an implicitly defined curve. For example,

if y3 + xy = x2, we differentiated through with respect to x and solved for
dy

dx
, as follows:

d

dx
y3 +

d

dx
xy =

d

dx
x2

3y2
dy

dx
+ x

dy

dx
+ y = 2x

dy

dx
=

2x− y
3y2 + x

We differentiated through with respect to x because the slope
dy

dx
is the rate of change of y with2

respect to x.3

If we differentiate an equation with with to the time t, we obtain a relationship between two or4

more different rates of change.5
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Example 16

Let’s suppose you are blowing up a balloon using an air pump whose output is 3000 cm3 of air7

per second (this is about 180 cubic inches). At the beginning, the balloon expands rapidly. But8

as it gets bigger, it expands more slowly. When the radius of the balloon is 15 cm, how fast is it9

expanding?10

We use the term related rates because how fast the radius is changing clearly depends on how11

fast the volume is changing. The less air the pump puts out, the slower the radius will change.12

To find out how these rates are related, we first need to recall the formula for the volume of a
sphere in terms of its radius:

V =
4

3
πr3.

Similar to what we did for implicit differentiation, we now differentiate through by t to see how
the rates are related. The actual calculations are the same as before, but we’re just using different
variables.

d

dt
V =

d

dt

4

3
πr3

dV

dt
=

4

3
π

(
3r2

dr

dt

)
dV

dt
= 4πr2

dr

dt

Notice there are three quantities to be substituted in the last equation:
dV

dt
, r, and

dr

dt
. We are

given two of the three:
dV

dt
= 3000 and r = 15. So we substitute and use a calculator to get

3000 = 4π(152)
dr

dt
dr

dt
= 1.06

Thus, when the radius of the balloon is 15 cm, the radius is growing at a rate of 1.06 cm/s. Be13

sure that your final answer always has the appropriate units.14

Let’s look at the equation
dV

dt
= 4πr2

dr

dt

in more detail. Since
dV

dt
is constant, we may plug in and solve for

dr

dt
.

3000 = 4πr2
dr

dt
dr

dt
=

3000

4πr2

≈ 238.7

r2
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dr

dt

r
1

238.7

Figure 8.19: Graph of
dr

dt
=

238.7

r2

A graph of this relationship is shown in Figure 8.19. How do we interpret this graph? Since the air15

is pumped at a constant volume, as the balloon gets bigger, the rate at which the radius expands16

keeps getting smaller.17

The essential point is this. Since we have an equation which relates radius and volume (the equation18

for the volume of a sphere), by differentiating with respect to t, we get an equation which relates19

the rates of change of the volume and the radius.20
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Example 221

Large oil spills may release 10,000 or more liters of oil per day. A commonly used figure for the22

thickness of an oil spill is 1 mm. If a spill leaks 10,000 liters a day at a thickness of 1 mm and23

extends out in a circular area from the origin of the spill, at what rate is the radius of the spill24

changing per hour at the end of the first day?25

The basic equation we’re considering is the area of a circle in terms of its radius:

A = πr2.

Differentiating with respect to t, we get

d

dt
A =

d

dt
πr2

dA

dt
= π

(
2r
dr

dt

)
dA

dt
= 2πr

dr

dt

We are being asked to find
dr

dt
when t = 24, since time is being measured in hours. Assuming that26

oil is leaked at a constant rate, this means that
dA

dt
is constant. But what is it?27

In the metric system, one liter is 1000 cm3. 1 cm is 10 mm, and so 1 cm3 = 1000 mm3. This means28

that one liter is 1,000,000 mm3. So 10,000 liters is 1010 mm3.29

Using 1 mm as the thickness of the spill, we have the area of the spill is increasing at

1010 mm3

1 mm
= 1010 mm2

per day. So per hour, we have

dA

dt
=

1010 mm2

24 hr
≈ 4.2× 108mm2/hr.

What about r? After one day, 10,000 liters of oil have spilled. So the total area of oil spilled,
assuming 1 mm thickness, is 1010 mm2, as we just calculated. Using the relationship A = πr2, we
get

A = πr2

1010 = πr2

r ≈ 56,400
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Now we can substitute back in and solve.

dA

dt
= 2πr

dr

dt

4.2× 108 = 2π · 56,400 · dr
dt

dr

dt
≈ 1185

So the radius is expanding at 1185 mm/hr after the first day, which is about 3.9 ft/hr.30
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Example 331

You are scuba diving, and have enough air in your tank to breathe 1 cu ft/min of air for an32

hour (this is a figure commonly used for diving). The pressure in your tank is 3000 psi (standard33

pressure). At what rate is the air pressure changing in your tank when you start your dive? For34

comparison, air pressure at sea level is 14.7 psi.35

For this example, we use Boyle’s Law:
PV = k.

Here, P stands for air pressure, V stands for the volume, and k is a constant to be determined by36

the scenario. You can use whatever units you want for P and V as long as you’re consistent. We’ll37

use psi (pounds per square inch), and cu ft (cubic feet).38

We’re basically at sea level, so to start, we can use P = 14.7. Breathing 1 cu ft/min of air for an
hour requires 60 cu ft of air. So

PV = 14.7× 60 = k = 882.

The units of k are psi cu ft/min. Let’s use the equation PV = 882 and differentiate with respect
to t to get an equation relating rates.

PV = 882

d

dt
PV =

d

dt
882

= 0

This is very similar to the work we did to find
d

dx
xy for implicit differentiation. We used the

Product Rule. Here, we use f = P and g = V.

f(t) = P f ′(t) =
dP

dt

g(t) = V g′(t) =
dV

dt

Now substitute into the Product Rule.

d

dt
PV = 0

f(t)g′(t) + g(t)f ′(t) = 0

P
dV

dt
+ V

dP

dt
= 0

Where to proceed from here? At the start of the dive, we know that P = 3000, since we haven’t
released any air yet (that is, decreased the pressure). To find V at the start of the dive – that is,
the volume of your tank – we use Boyle’s Law.

PV = 882

3000 · V = 882

V ≈ 0.3



Section 8.6 � Related Rates 259

At the start of the dive, we are using 0.3/60 cu ft of air per minute (since the dive is for one hour),
and so

dV

dt
= 0.3/60 = 0.005.

Substituting these values in, we get:

P
dV

dt
+ V

dP

dt
= 0

3000× 0.005 + 0.3 · dP
dt

= 0

0.3 · dP
dt

= −15

dP

dt
= −50

This means that the pressure in your tank is decreasing approximately 50 psi per minute at the39

beginning of your dive.40

Bear in mind that this is an oversimplification. Air in tanks is actually a mixture of oxygen, helium,41

and nitrogen, and the proportions vary depending on how deep the dive is. But regardless, Boyle’s42

Law is still very important in the science of scuba diving.43
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Homework44

1. Suppose you are blowing up a balloon using an air pump whose output is 4000 cm3 of air per45

second (this is about 240 cubic inches). When the radius of the balloon is 12 cm, how fast is46

it expanding?47

2. If an oil spill leaks 12,000 liters a day at a thickness of 1.5 mm and extends out in a circular48

area from the origin of the spill, at what rate is the radius of the spill changing after 12 hours?49

3. You are scuba diving, and have enough air in your tank to breathe 1.2 cu ft/min of air for50

an hour. The pressure in your tank is 2500 psi. At what rate is the air pressure changing in51

your tank when you start your dive? Air pressure at sea level is 14.7 psi.52
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Solutions53

1. Here, we need to recall the formula for the volume of a sphere in terms of its radius:

V =
4

3
πr3.

We now differentiate through by t to see how the rates are related.

d

dt
V =

d

dt

4

3
πr3

dV

dt
=

4

3
π

(
3r2

dr

dt

)
dV

dt
= 4πr2

dr

dt

Notice there are three quantities to be substituted in the last equation:
dV

dt
, r, and

dr

dt
. We

are given two of the three:
dV

dt
= 4000 and r = 12. So we substitute and use a calculator to

get

4000 = 4π(122)
dr

dt
dr

dt
≈ 2.21

Thus, when the radius of the balloon is 12 cm, the radius is growing at a rate of 2.21 cm/s.54

2. The basic equation we’re considering is the area of a circle in terms of its radius:

A = πr2.

Differentiating with respect to t, we get

d

dt
A =

d

dt
πr2

dA

dt
= π

(
2r
dr

dt

)
dA

dt
= 2πr

dr

dt

We are being asked to find
dr

dt
when t = 12, since time is being measured in hours. Assuming55

that oil is leaked at a constant rate, this means that
dA

dt
is constant.56

In the metric system, one liter is 1000 cm3. 1 cm is 10 mm, and so 1 cm3 = 1000 mm3. This57

means that one liter is 1,000,000 mm3. So 12,000 liters is 1.2× 1010 mm3.58

Using 1.5 mm as the thickness of the spill, we have the area of the spill is increasing at

1.2× 1010 mm3

1.5 mm
= 8× 109 mm2
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per day. So per hour, we have

dA

dt
=

8× 109 mm2

24 hr
≈ 3.3× 108mm2/hr.

What about r? After one day, 12,000 liters of oil have spilled. After 12 hours, only 6000
liters have spilled. So the total area of oil spilled after 12 hours, assuming 1.5 mm thickness,
is half of 8× 109 mm2, or 4× 109 mm2. Using the relationship A = πr2, we get

A = πr2

4× 109 = πr2

r ≈ 35,700

Now we can substitute back in and solve.

dA

dt
= 2πr

dr

dt

3.3× 108 = 2π · 35,700 · dr
dt

dr

dt
≈ 1471

So the radius is expanding at 1471 mm/hr after the first day.59

3. For this example, we use Boyle’s Law:

PV = k.

For units, we’ll use psi (pounds per square inch), and cu ft (cubic feet).60

We’re basically at sea level, so to start, we can use P = 14.7. Breathing 1.2 cu ft/min of air
for an hour requires 72 cu ft of air. So

PV = 14.7× 72 = k = 1058.

The units of k are psi cu ft/min. Let’s use the equation PV = 1058 and differentiate with
respect to t to get an equation relating rates.

PV = 1058

d

dt
PV =

d

dt
1058

P
dV

dt
+ V

dP

dt
= 0

At the start of the dive, we know that P = 2500, since we haven’t released any air yet (that
is, decreased the pressure). To find V at the start of the dive – that is, the volume of your
tank – we use Boyle’s Law.

PV = 1058

2500 · V = 1058

V ≈ 0.4
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At the start of the dive, we are using 0.4/60 cu ft of air per minute (since the dive is for one
hour), and so

dV

dt
= 0.4/60 = 0.007.

Substituting these values in, we get:

P
dV

dt
+ V

dP

dt
= 0

2500× 0.007 + 0.4 · dP
dt

= 0

0.4 · dP
dt

= −17.5

dP

dt
= −44

This means that the pressure in your tank is decreasing approximately 44 psi per minute at61

the beginning of your dive.62
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9.1 Antiderivatives1

As we just saw in the YouTube video, the trajectory of water shooting out from a pump looks like2

an upside-down parabola. Why should this be?3

The answer is “gravity.” If there wasn’t any gravity, then when water shot out of a pump, it would4

just keep traveling in a straight line, going higher and higher. This is called Newton’s First Law of5

Motion. Or if you threw a baseball, it would never hit the ground, it would just keep going in the6

direction you threw it.7

Basically, what’s happening is this. When you throw something up, it wants to keep going up. But8

gravity wants to bring it back down. So you have two opposite forces – how hard you threw it, and9

how strong gravity is. It turns out that gravity wins.10

Why is that? It’s really hard to go to the moon – you have to counteract gravity. In order to leave11

the Earth’s atmosphere, it turns out that you have to be going at least 25,000 miles an hour! The12

fastest baseball pitch has been clocked at 102 mph. Not even close.13

We need a little more physics. Suppose a skydiver jumps out of an airplane. Once you jump, you14

start falling. Your velocity keeps increasing as you keep falling – you keep falling faster and faster.15

But your accleration is constant.16

This is a remarkable fact, and physicists have been studying gravity for centuries. What’s important17

for us is just the fact that this acceleration due to gravity is constant, at 9.8 m/s2.18

A word about units. If displacement is measured in meters and time is measured in seconds, then19

the velocity – the rate of change – is measured in m/s. This is the same as mph (miles per hour),20

except with a change of units. So since acceleration is the derivative (rate of change) of velocity,21

its units are m/s/s, or m/s2.22

So why is this important? We know that when we take the derivative of displacement, we get the23

velocity. And when we take the derivative of the velocity, we get acceleration. And we know that24

acceleration is constant. So how do we find displacement? We have to work backwards. Before, we25

knew displacement and used derivatives to get acceleration. Now, we know the acceleration and26

have to use antiderivatives to get the displacement.27

What is an antiderivative? Since the derivative of f(x) = x2 is 2x, we say that x2 is an antiderivative28

of 2x. We say an antiderivative, because there is more than one. But if g(x) = x2 + 5, then g′(x)29

is also an antiderivative of 2x. That’s because when you take the derivative of a constant, you get30

0. We usually say that the antiderivative of 2x is x2 + C, where C can be any number.31

https://www.youtube.com/watch?v=KPE6-YozMEs
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Example 132

You are standing on the roof of a building which is 20 m tall (this is about 60 ft). You drop a33

marble from the roof. How long will it take to hit the ground?34

One important note is that all objects, no matter how small or large, will take the same time to hit35

the ground – this is a fundamental principle in physics. Here, we ignore the effects of air resistance.36

If you dropped a feather, air resistance would slow it down. But if you dropped a marble and a37

bowling ball, they would take the same amount of time to reach the ground because air resistance38

would be negligible.39

Let’s create a coordinate system, as shown in Figure 9.1. As we did before, when working with40

displacement, we use s(t) for displacement, v(t) for velocity, and a(t) for acceleration.41

20 m

s(t)

Figure 9.1: Dropping a marble from a roof.

Now let’s start working backwards. We represent the fact that acceleration due to gravity is a
constant 9.8 m/s2 by

a(t) = −9.8.

Mathematically we have a negative acceleration because we are measuring displacement from the42

ground up. If we throw a ball up, gravity acts to bring it down – the opposite direction. The units43

of a(t) are m/s2.44

Going backwards to find v(t) – which is the antiderivative of velocity – we ask what function of t
would we differentiate to get −9.8. Well, we know that the derivative of a linear function is constant,
so we would guess

v(t) = −9.8t+ C = −9.8t+ v0.

In physics, the term “v0” is used instead of C, and is called the initial velociy. This is because

v(0) = −9.8(0) + v0 = v0.

The units of v(t) are m/s.45

What is the initial velocity in this problem? Since we are simply dropping the marble, it’s just 0.
Thus,

v(t) = −9.8t.
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Time to go backwards again. We know that taking the derivative of t2 will give us 2t. So to just

get t, we would have to start with
1

2
t2. Now displacement is the antiderivative of velocity, and so

s(t) = −9.8

(
1

2
t2
)

+ C = −4.9t2 + s0.

s0 is called the initial displacement because

s(0) = −4.9(02) + s0 = s0.

In our case, we would use s0 = 20, since the marble is being dropped from 20 m above ground.
Thus,

s(t) = −4.9t2 + 20.

The units of s(t) are m.46

Why was it so important to find s(t)? Our original question was to determine how long it took the
marble to hit the ground. Since our coordinate system measures height above the ground, this is
the same thing as asking when s(t) = 0, since 0 m above the ground is actually on the ground. So
now we solve.

s(t) = 0

−4.9t2 + 20 = 0

4.9t2 = 20

t2 ≈ 4.08

t ≈ 2.02 s

Note that we took the positive square root only as the time in seconds must be a positive number.47

So this means that the marble will hit the ground in approximately two seconds.48

The important takeaway is that because of the physics of falling objects, we have to start with the49

acceleration and work backwards to find the displacement. In fact, much of calculus was created in50

order to explain physical phenomena. This is just one more example.51
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Example 252

You are standing on the roof of a building which is 20 m tall (this is about 60 ft). You throw a53

marble down from the roof at 10 m/s (about 22 mph), not unreasonable as it is five times slower54

that the fastest baseball pitch. (1) How long will it take to hit the ground? (2) At what velocity55

does it hit the ground?56

We’ll work through this one a bit more quickly as we have already seen the process. As before, we
start with

a(t) = −9.8,

so that

v(t) = −9.8t+ v0.

Now what is v0? We’re throwing down at 10 m/s, and so v0 is −10. Remember, we’re measuring
displacement as the distance up from the ground, so anything which acts to bring our marble down
has to be negative. Therefore,

v(t) = −9.8t− 10.

Now we work backwards once more to find s(t). We use
1

2
t2 as an antiderivative of t, and −10t as

an antiderivative of −10. Thus,

s(t) = −9.8

(
1

2
t2
)
− 10t+ s0

= −4.9t2 − 10t+ 20,

where we again use 20 for s0 since our building is 20 m tall.57

So to answer the first question, we must find out when s(t) = 0, since that corresponds to being on
the ground. But to solve

−4.9t2 − 10t+ 20 = 0,

we need to remember the quadratic formula. We’ll state it with the variable t since that’s what58

we’re using.59

Quadratic Formula

If at2 + bt+ c = 0, then

t =
−b±

√
b2 − 4ac

2a
.

60

To get accuracy to one decimal, we’ll write numbers to two decimal places, then round to one
decimal place for our final answer. We use a = −4.9, b = −10, and c = 20. Be very careful with
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negative signs.

t =
−(−10)±

√
(−10)2 − 4(−4.9)(20)

2(−4.9)

=
10±

√
100 + 392

−9.8

=
10± 22.18

−9.8
10 + 22.18

−9.8
≈ −3.3

10− 22.18

−9.8
≈ 1.2

As t represents a time, we choose the positive value. Thus, the marble hits the ground after about61

1.2 s.62

What is its velocity when it hits the ground? We substitute the value of t into the velocity equation,
v(t). Thus,

v(t) = −9.8t− 10

v(1.2) = −9.8(1.2)− 10

≈ −21.8

So the marble hits the ground at about −21.8 m/s, which is about −49 mph. To make sense of63

your answers, it is helpful to know that to convert m/s to mph, multiply by 2.237.64

Now that we’ve worked out the displacement, let’s do it one more time, just using v0 and s0 without
substituting in values.

a(t) = −9.8

v(t) = −9.8t+ v0

s(t) = −9.8

(
1

2
t2
)

+ v0 · t+ s0

= −4.9t2 + v0t+ s0.

There’s no need to work out all the steps each time. So we summarize.65

Displacement Equations

If an object is thrown with an initial velocity of v0 m/s from a height of s0
m, the equations for the velocity and displacement are

v(t) = −9.8t+ v0, s(t) = −4.9t2 + v0t+ s0.

66

Just a few remarks. If you throw the object up, its initial velocity will be postive. We used a67

negative initial velocity because we were throwing it down. Also, it is helpful to know that if you68
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are measuring velocity in ft/s, the acceleration due to gravity is −32 ft/s2. Units for science are69

almost always metric, so we’ll stick to m/s in our examples. You can easily convert back on forth70

with online unit converters. Just google “convert meters to feet” and you’ll find one.71

Example 372

Suppose you throw a baseball at an angle of 60◦ from the horizontal at a speed of 15 m/s (which73

is about 34 mph). When the baseball leaves your hand, it is 2 m above the ground. (1) When will74

it hit the ground again? (2) How far away will the ball land? (3) By finding an equation in x and75

y, show that the trajectory the baseball takes is a parabola.76

Note: When working out projectile motion problems like this in physics, angles are usually77

measured in degrees, not radians.78

In the previous examples, we were only concerned with vertical displacement. Now we’re adding79

in horizontal displacement as well. Because we have two displacements, we’ll call the vertical80

displacement y(t) and the horizontal displacement x(t), illustrated in Figure 9.2.81

y(t)

x(t)2 m

Figure 9.2: Throwing a baseball.

We know the formula for the vertical displacement from our previous work:

y(t) = −4.9t2 + v0t+ s0.

What about the horizontal displacement? How does gravity affect the horizontal displacement?82

Not at all, actually. This is because gravity is a vertical force. A fundamental principle in physics83

is that a force in one direction has no effect on something moving in a perpendicular direction.84

Think about it: if you’re running a race, does gravity slow you down? No, it doesn’t. That’s85

because your direction of motion is perpendicular to the force of gravity.86

Since in our coordinate system, the x- and y-axes are perpendicular and gravity affects the y-
direction, it has no effect on movement in the x-direction. In other words, the baseball moves with
constant horizontal velocity, which we will call vh. So when we figure out just what vh is, then
we can say that x(t) = vht. Summarizing, we have

y(t) = −4.9t2 + v0t+ s0, x(t) = vht.

We have three constants we have to figure out: v0, s0, and vh. We know that s0 = 2 as it is given87

in the problem. To figure out v0 and vh, we have to decompose the velocity into its vertical and88

horizontal components, as shown in Figure 9.3.89
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15 v0

vh

60◦

Figure 9.3: Decomposing a vector into vertical and horizontal components.

To do this, we create a right triangle as shown, and use trigonometry to find the lengths of the legs
of the triangle. This decomposition of forces into components is another fundamental principle of
physics. Reading off the triangle, we have

sin 60◦ =
v0
15
, cos 60◦ =

vh
15
.

Then we get

v0 = 15 sin 60◦ ≈ 13, vh = 15 cos 60◦ = 7.5.

Thus, the vertical component of the velocity is about 13 m/s, and the horizontal component of the
velocity is 7.5 m/s. So now we have equations for vertical and horizontal displacement:

y(t) = −4.9t2 + 13t+ 2, x(t) = 7.5t.

We point out that we use +13 as we are throwing the ball up. In the previous example, we were90

throwing the marble down.91

1. To see when the baseball will hit the ground, we solve y(t) = 0, since y(t) is the vertical
displacement:

−4.9t2 + 13t+ 2 = 0.

As before, we use the quadratic formula and choose the positive solution, which is t ≈ 2.8 s.92

Note that we do not need to use x(t) here because we are looking at vertical displacement.93

2. To see how far away the baseball lands, we are looking for the horizontal displacement.
Remember, gravity will bring the ball back down, but will have no effect on the horizontal
displacement. So we plug 2.8 into x(t), giving

x(2.8) = 7.5(2.8) = 21.

Thus, the baseball lands 21 m away from where you threw it.94

3. To show that the baseball’s trajectory is a parabola, we need to use the displacement equa-
tions,

y(t) = −4.9t2 + 13t+ 2, x(t) = 7.5t,
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and eliminate the variable t. This is not hard to do, since dividing the second equation by 7.5

gives t =
x

7.5
. Plugging back into the first equation:

y(t) = −4.9t2 + 13t+ 2

y = −4.9
( x

7.5

)2
+ 13

( x

7.5

)
+ 2

y = −0.087x2 + 1.73x+ 2

Since the coefficient of x2 is negative, this is the equation of a parabola which opens down.95

Example 496

Suppose we want to create a circular fountain like in the video, where water shoots from spouts on97

the edge of the circle at ground level, and they all end up splashing in the center. We would like98

the spouts to shoot water at a 55◦ angle, and the diameter of the fountain is 50 m. (1) How fast99

does the water have to be shot out of the spouts for the waterspouts to converge in the center? (2)100

How high does the water go? Ignore any air resistance in this problem.101

y(t)

x(t)
25 50

Figure 9.4: Planning converging fountains.

Let’s rewrite the displacement equations for reference.

y(t) = −4.9t2 + v0t+ s0, x(t) = vht.

Like before, we need to find v0, s0, and vh. Since the spouts are on the ground, we know that s0 = 0.102
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Now let’s draw what is called a force diagram in physics, like we did before. Here, we don’t know
the velocity, so we represent it by v. Reading off the right triangle, we have

sin 55◦ =
v0
v
, cos 55◦ =

vh
v
.

Thus,

v0 = v sin 55◦ ≈ 0.82v, vh = v cos 55◦ ≈ 0.57v.

v v0

vh

55◦

Figure 9.5: Decomposing a force into vertical and horizontal components.

103

Substituting back into the displacement equations (remember that s0 = 0), we have

y(t) = −4.9t2 + 0.82vt, x(t) = 0.57vt.

Remember, v is a constant here.104

Let’s take stock of what we have. Here’s the information we haven’t used yet: the fact that the105

water has to travel 25 m in the horizontal direction to make it to the center, since the circle has a106

diameter of 50 m, and the fact that when the water does make it to the center, y(t) = 0.107

First, we’ll look at y(t) = 0. Note that because s0 = 0, we won’t need the quadratic formula.

y(t) = 0

−4.9t2 + 0.82vt = 0

t(0.82v − 4.9t) = 0

t = 0

0.82v − 4.9t = 0

0.82v = 4.9t

t =
0.82v

4.9
≈ 0.17v

Which value of t do we choose? The value t = 0 corresponds to the fact that the water shoots off108

from ground level, so we want t = 0.17v. This means once we figure out what v is, we can tell how109

long it takes the water to hit the center of the fountain.110
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So we use the last piece of information: the diameter of the fountain is 50 m. That means that at
t = 0.17v – when the water hits the center – it has traveled 25 m. We say this algebraically as

x(t) = x(0.17v) = 25.

Let’s solve.

x(0.17v) = 25

(0.57v)(0.17v) = 25

0.097v2 = 25

v2 =
25

0.97

v =

√
25

0.97

≈ 16.1

Therefore, we need the water to be shot out at 16.1 m/s (about 36 mph) so that it hits the center111

of the fountain exactly. Note that we choose the positive square root since the water is being shot112

up at an angle of 55◦.113

How high does the water go? Remember that when we know where the parabola opening down114

crosses the x-axis, the highest point occurs at the midpoint of those crossings. In other words, the115

water is at its highest point at
25

2
= 12.5 m.116

But y(t) is a function of t. So we cannot plug in 12.5 for t, since t is measured in seconds, not
meters. So we have to go back to our equation for x(t), solving x(t) = 12.5.

x(t) = 0.57vt

= (0.57)(16.1)t

≈ 9.18t

9.18t = 12.5

t =
12.5

9.18
≈ 1.36

So the waterspouts reach their highest point at about 1.36 s. Plugging back into y(t), we have

y(t) = −4.9t2 + 0.82vt

y(1.36) = −4.9(1.36)2 + 0.82(16.1)(1.36)

≈ 8.9

So the highest the water goes is about 8.9 m, which is about 29 ft.117
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Homework118

1. You are standing on the roof of a building which is 30 m tall. You accidentally drop your119

phone from the roof. How long will it take to hit the ground?120

2. You are standing on the roof of a building which is 30 m tall. You throw a marble up from121

the roof at 12 m/s. (1) How long will it take to hit the ground? (2) At what velocity does it122

hit the ground?123

3. Suppose you throw a baseball at an angle of 50◦ from the horizontal at a speed of 20 m/s.124

When the baseball leaves your hand, it is 2 m above the ground. (1) When will it hit the125

ground again? (2) How far away will the ball land? (3) By finding an equation in x and y,126

show that the trajectory the baseball takes is a parabola.127



Section 9.1 � Antiderivatives 277

Solutions128

1. We begin with the Displacement Equations, using v0 = 0 and s0 = 30:

s(t) = −4.9t2 + 30.

When your phone hits the ground, s(t) = 0. Solving,

s(t) = 0

−4.9t2 + 30 = 0

4.9t2 = 30

t2 ≈ 6.12

t ≈ 2.47

Thus, your phone hits the ground after about 2.47 s. Note we only considered the positive129

square root as we are looking for a time.130

2. We begin with the Displacement Equations, using v0 = 12 and s0 = 30:

v(t) = −9.8t+ 12, s(t) = −4.9t2 + 12t+ 30.

(a) To find out how long the marble will take to hit the ground, we solve s(t) = 0 using the
quadratic formula.

t =
−12±

√
122 − 4(−4.9)(30)

2(−4.9)

=
−12±

√
144 + 588

−9.8

=
−12± 27.06

−9.8
−12 + 27.06

−9.8
≈ −1.5

−12− 27.06

−9.8
≈ 4.0

As t represents a time, we choose the positive value. Thus, the marble hits the ground131

after about 4.0 s.132

(b) To find the velocity when the marble hits the ground, we substitute the value of t into
the velocity equation, v(t). Thus,

v(t) = −9.8t+ 12

v(4.0) = −9.8(4.0) + 12

≈ −27.2

So the marble hits the ground at about −27.2 m/s.133
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3. We know the formula for the vertical and horizontal displacement from our previous work:

y(t) = −4.9t2 + v0t+ s0, x(t) = vht.

We are given that s0 = 2, but we will need to decompose the initial velocity vector in order134

to find v0 and vh.135

20 v0

vh

50◦

Figure 9.6: Decomposing a vector into vertical and horizontal components.

Reading off the triangle, we have

sin 50◦ =
v0
20
, cos 50◦ =

vh
20
.

Then we get
v0 = 20 sin 50◦ ≈ 15.3, vh = 20 cos 50◦ ≈ 12.9.

Thus, the vertical component of the velocity is about 15.3 m/s, and the horizontal component
of the velocity is 12.9 m/s. So now we have equations for vertical and horizontal displacement:

y(t) = −4.9t2 + 15.3t+ 2, x(t) = 12.9t.

(a) To see when the baseball will hit the ground, we solve y(t) = 0, since y(t) is the vertical
displacement:

−4.9t2 + 15.3t+ 2 = 0.

As before, we use the quadratic formula and choose the positive solution, which is t ≈ 3.2136

s.137

(b) To see how far away the baseball lands, we are looking for the horizontal displacement.
So we plug 3.2 into x(t), giving

x(3.2) = 12.9(3.2) ≈ 41.3.

Thus, the baseball lands 41.3 m away from where you threw it.138

(c) To show that the baseball’s trajectory is a parabola, we need to use the displacement
equations,

y(t) = −4.9t2 + 15.3t+ 2, x(t) = 12.9t,

and eliminate the variable t. Start by dividing the second equation by 12.9, giving t =
x

12.9
. Plugging back into the first equation:

y(t) = −4.9t2 + 15.3t+ 2

y = −4.9
( x

12.9

)2
+ 15.3

( x

12.9

)
+ 2

y = −0.029x2 + 1.19x+ 2
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Since the coefficient of x2 is negative, this is the equation of a parabola which opens139

down.140
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9.2 Antiderivatives, II1

We just learned how we can use the process of antidifferentiation to solve everyday problems in2

physics. So far, we’ve found the displacement from the velocity when velocity is a linear function.3

It’s time to go a bit further.4

First, some common notation. We said the most general antiderivative of −9.8 was −9.8t + C,
where the variable was t (for time), and C was whatever constant we chose. We write this as∫

−9.8 dt = −9.8t+ C.

The “
∫

” is the notation for taking an antiderivative, and the “dt” means the variable is t. If we
were working with the variable were x, we would write∫

−9.8 dx = −9.8x+ C.

And instead of always saying “the most general antiderivative of f(x),” we just write∫
f(x) dx.

Learning to think backwards about differentiation does take a lot of practice.5

Examples6

We’ll work out several short examples. It might be a good idea to have page 240 handy.7

1. Find

∫
x3 dx.8

We know that when using the Power Rule to differentiate, we decrease the exponent by 1.
So to antidifferentiate, we need to increase the exponent by one. But we don’t just get x4,

because
d

dx
x4 = 4x3 – we have an extra factor of 4. So we compensate by dividing by 4,

giving ∫
x3 dx =

1

4
x4 + C.

We can check by differentiating:

d

dx

(
1

4
x4 + C

)
=

1

4
(4x3) + 0 = x3.

2. Find

∫
xn dx.9

We take the same approach as in the previous problem. Increasing the exponent by 1 gives
xn+1, but

d

dx
xn+1 = (n+ 1)xn.
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So we get an extra factor of n+ 1, which we compensate for by dividing. Thus,∫
xn dx =

1

n+ 1
xn+1 + C.

Again, we can check by differentiating:

d

dx

(
1

n+ 1
xn+1 + C

)
=

1

n+ 1
(n+ 1)xn + 0 = xn.

This rule is so important, we box it.10

Inverse Power Rule

∫
xn dx =

1

n+ 1
xn+1 + C, n 6= −1.

11

It is important to note why we must have n 6= −1. This is because we would get
1

0
x0, which

is undefined. But when n = −1, we have∫
x−1 dx =

∫
1

x
dx

= lnx+ C,

since we know that
d

dx
lnx =

1

x
.12

3. Find

∫
(x4 − 2x3 + 5) dx.13

We apply the Inverse Power Rule.∫
(x4 − 2x3 + 5) dx =

1

5
x5 − 2

(
1

4
x4
)

+ 5x+ C

=
1

5
x5 − 1

2
x4 + 5x+ C.

4. Find

∫ √
x dx.14

As we did with derivatives, we rewrite as a power and then use the Inverse Power Rule.∫ √
x dx =

∫
x1/2 dx

=
1

3/2
x3/2 + C

=
2

3
x3/2 + C.
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5. Find

∫
1

x6
dx.15

Again, we must rewrite, as we needed to do with derivatives.16

∫
1

x6
dx =

∫
x−6 dx

=
1

−5
x−5 + C

= − 1

5x5
+ C.

Be careful when adding 1 to negative exponents.17

6. Find

∫
cos(x) dx.18

Since
d

dx
sin(x) = cos(x), then ∫

cos(x) dx = sin(x) + C.

7. Find

∫
sin(x) dx.19

The answer isn’t cos(x) + C, since
d

dx
cos(x) = − sin(x). We have to compensate by putting

in a negative sign. ∫
sin(x) dx = − cos(x) + C.

8. Find

∫
3

x2 + 1
dx.20

We recognize
1

x2 + 1
as the derivative of arctan(x), so that∫

3

x2 + 1
dx = 3 arctan(x) + C.

9. Find

∫
2√

1− x2
dx.21

We recognize the derivative of arcsin(x) here.∫
2√

1− x2
dx = 2 arcsin(x) + C.
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Initial Value Problems22

We’ve already seen initial value problems, as when working with physics. In one example, we threw23

a marble down at 10 m/s. We used the fact that a(t) = −9.8, worked backwards (that is, took the24

antiderivative), and used the 10 to find C = v0. Now the derivative of velocity is acceleration, and25

so v′(t) = a(t). Let’s redo this problem using our new notation.26

We can rewrite this problem as follows.

Solve the initial value problem v′(t) = −9.8, v(0) = 10.

Here is the solution using new notation. There are no new steps or concepts involved here, just a
different way of stating the problem (as an initial value problem) and writing the solution (using
antiderivative notation).

v(t) =

∫
v′(t) dt

=

∫
−9.8 dt

= −9.8t+ C.

v(0) = −9.8(0) + C

= 10.

C = 10.

v(t) = −9.8t+ 10.

Essentially, an initial value problem presents you with a derivative, but also some value of the27

function you’re looking for. This additional information will allow you to find the +C.28

Now let’s look at some examples.29

10. Solve the initial value problem f ′(x) = x2 +2x+1, f(3) = 15. We first take an antiderivative.

f(x) =

∫
(x2 + 2x+ 1) dx

=
1

3
x3 + 2

(
1

2
x2
)

+ x+ C

=
1

3
x3 + x2 + x+ C.

Then

f(3) =
1

3
· 33 + 32 + 3 + C

= 9 + 9 + 3 + C

= 21 + C = 15,

Thus, C = −6, and so f(x) =
1

3
x3 + x2 + x− 6.30
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11. Solve the initial value problem f ′(x) = 3x, f(0) = 1.31

Here, we need to remember that
d

dx
3x = 3x ln 3, so to get a derivative of just 3x, we need to

divide by ln 3.

f(x) =

∫
3x dx =

3x

ln 3
+ C.

Let’s confirm that dividing by ln 3 was the right move.

d

dx

(
3x

ln 3
+ C

)
=

1

ln 3
(3x ln 3) + 0

= 3x.

Now we use the given fact f(0) = 1 to find C.

f(0) = 1

30

ln 3
+ C = 1

1

ln 3
+ C = 1

C = 1− 1

ln 3

Thus, f(x) =
3x

ln 3
+ 1− 1

ln 3
.32

12. Solve the initial value problem f ′(x) = sec2(x) + sin(x), f(π/4) = 1.33

We need to remember that
d

dx
tan(x) = sec2(x). Then∫

(sec2(x) + sin(x)) dx = tan(x)− cos(x) + C.

Therefore,

f(π/4) = 1

tan(π/4)− cos(π/4) + C = 1

1− 1√
2

+ C = 1

C =
1√
2

So we get f(x) = tan(x)− cos(x) +
1√
2
.34
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As we saw with projectile motion – a common example in physics – we knew the acceleration, and
used antidifferentiation to find the displacement. Let’s return to a previous example, where we
throw down a marble off a 20 meter high roof at 10 m/s. Restated as an initial value problem, we
have

Solve the initial value problem s′′(t) = −9.8, s′(0) = −10, s(0) = 20.

Since s(t) is the displacement, s′′(t) is the acceleration, which is constant. Since the velocity is35

s′(t), the statement s′(0) = −10 means that we are throwing the marble down at 10 m/s. And36

s(0) = 20 means we are throwing it from a height of 20 m. So the entire problem is restated using37

s(t) only. This is the way such problems are usually stated in physics.38

13. Solve the initial value problem s′′(t) = t4 − t2, s′(0) = 5, s(0) = 10.39

Since we are given a second derivative, we have to antidifferentiate twice – first to find s′(t),
and then to find s(t).

s′(t) =

∫
(t4 − t2) dt =

1

5
t5 − 1

3
t3 + C.

We use the information s′(0) = 5 to find C.

5 = s′(0) =
1

5
· 05 − 1

3
· 03 + C,

so that C = 5 and s′(t) =
1

5
t5 − 1

3
t3 + 5. We now antidifferentiate again to find s(t).

s(t) =

∫ (
1

5
t5 − 1

3
t3 + 5

)
dt

=
1

5

(
1

6
t6
)
− 1

3

(
1

4
t4
)

+ 5t+ C

=
1

30
t6 − 1

12
t4 + 5t+ C.

It is clear that plugging 0 into s(t) just gives back C, so C = 10 from the given information40

s(0) = 10. Thus, s(t) =
1

30
t6 − 1

12
t4 + 5t+ 10.41
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No single step in any of these problems was especially tricky. What makes this section challenging42

is that you have to remember all of your derivative formulas. And because there are many small43

steps, you have to really pay attention to the algebra. There are a few mistakes commonly made,44

so I’ll make a short list here.45

1. Incorrectly rewriting as powers of x, as in
√
x = x1/2 and

1

x3
= x−3,46

2. Using the Inverse Power Rule with
1

x
= x−1, since n = −1 is not allowed. Instead, notice47

that
1

x
is the derivative of lnx,48

3. Using the wrong + or − when taking the antiderivatives of sin(x) and cos(x),49

4. Making a calculation error when using initial values to find C.50
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Finding Antiderivatives51

Here is a summary of all the antiderivatives we know (that is, you can just use them at any time52

without justification), and the basic rules of antidifferentiation.53

1.

∫
cos(x) dx = sin(x).54

2.

∫
sin(x) dx = − cos(x) + C.55

3.

∫
sec2(x) dx = tan(x) + C.56

4.

∫
ex dx = ex + C.57

5.

∫
1

x
dx = lnx+ C.58

6.

∫
bx dx =

bx

ln b
+ C.59

7.

∫
1√

1− x2
= arcsin(x) + C.60

8.

∫
1

x2 + 1
= arctan(x) + C.61

9. The Inverse Power Rule:
When n 6= −1,∫

xn dx =
1

n+ 1
xn+1 + C.

10. The Sum Rule:∫
(f(x)+g(x)) dx =

∫
f(x) dx+

∫
g(x) dx+C.

11. The Difference Rule:∫
(f(x)−g(x)) dx =

∫
f(x) dx−

∫
g(x) dx+C.

12. The Constant Multiple Rule:∫
cf(x) dx = c

∫
f(x) dx+ C.

The Inverse Chain Rule: To integrate

∫
f ′(g(x))g′(x) dx:62

1. Look for a g(x) and g′(x) pair in the integrand – g′(x) can be off by a constant multiple;63

2. If g′(x) is off by a constant multiple, multiply and divide by this constant and factor out;64

3. Substitute u = g(x), and solve for du = g′(x) dx;65

4. Rewrite the integral in terms of u – all x’s should disappear;66

5. Find the antiderivative with respect to u;67

6. Substitute back to rewrite in terms of x only.68
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Homework69

1. Find

∫
(x5 − 6x3 + x2 − 4) dx.70

2. Find

∫
1√
x
dx.71

3. Find

∫ (
1

x
+

1

x2

)
dx.72

4. Find

∫
(3 sin(x)− 5 cos(x)) dx.73

5. Find

∫
6√

1− x2
dx.74

6. Solve the initial value problem f ′(x) = x3 − 3x2 − 1, f(2) = 10.75

7. Solve the initial value problem f ′(x) = cos(x)− sec2(x), f(π/3) = −
√

3.76

8. Solve the initial value problem s′′(t) = t3 + t, s′(0) = 3, s(0) = 8.77
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Solutions78

1. ∫
(x5 − 6x3 + x2 − 4) dx =

1

6
x6 − 6

(
1

4
x4
)

+
1

3
x3 − 4x+ C

=
1

6
x6 − 3

2
x4 +

1

3
x3 − 4x+ C

2. ∫
1√
x
dx =

∫
x−1/2 dx

=
1

1/2
x1/2 + C

= 2
√
x+ C.

3. ∫ (
1

x
+

1

x2

)
dx =

∫
(x−1 + x−2) dx

= lnx+
1

−1
x−1 + C

= lnx− 1

x
+ C.

4. ∫
(3 sin(x)− 5 cos(x)) dx = 3(− cos(x))− 5 sin(x) + C

= −3 cos(x)− 5 sin(x) + C.

5. ∫
6√

1− x2
dx = 6 arcsin(x) + C.

6. First, find a general antiderivative for f ′(x).

f(x) =

∫
f ′(x) dx

=

∫
(x3 − 3x2 − 1) dx

=
1

4
x4 − 3

(
1

3
x3
)
− x+ C

=
1

4
x4 − x3 − x+ C
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Then find C.

10 = f(2)

=
1

4
· 24 − 23 − 2 + C

= 4− 8− 2 + C

= −6 + C

C = 6.

Therefore,

f(x) =
1

4
x4 − x3 − x+ 6.

7. First, find a general antiderivative for f ′(x).

f(x) =

∫
f ′(x) dx

=

∫
(cos(x)− sec2(x)) dx

= sin(x)− tan(x) + C.

Next, find C.

−
√

3 = f(π/3)

= sin(π/3)− tan(π/3) + C

=

√
3

2
−
√

3 + C

C = −
√

3

2
.

Thus,

f(x) = sin(x)− tan(x)−
√

3

2
.

8. First, find s′(t).

s′(t) =

∫
s′′(t) dt

=

∫
(t3 + t) dt

=
1

4
t4 +

1

2
t2 + C.

Now use s′(0) = 3 to find C.

3 =
1

4
· 04 +

1

2
· 02 + C

C = 3.
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Thus,

s′(t) =
1

4
t4 +

1

2
t2 + 3.

Now that we have s′(t), we can find s(t).

s(t) =

∫
s′(t) dt

=

∫ (
1

4
t4 +

1

2
t2 + 3

)
dt

=
1

4
· 1

5
t5 +

1

2
· 1

3
t3 + 3t+ C

=
1

20
t5 +

1

6
t3 + 3t+ C.

Finally, use s(0) = 8 to find C.

8 = s(0)

=
1

20
· 05 +

1

6
· 03 + 3 · 0 + C

C = 8.

So our final answer is

s(t) =
1

20
t5 +

1

6
t3 + 3t+ 8.
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9.3 Areas1

We’ve come around full circle at this point. Let’s review an earlier example, illustrated in Figure2

9.7.3

v(t) (km/hr)

t (hr)
t 4

20

40

s(t) (km)

t (hr)
t 4

40

80

Figure 9.7: Velocity graph (left), and displacement graph (right).

Here, the velocity is given by v(t) = 10t since it is linear, and at t = 4, we are at 40 km/hr. The
displacement s(t) up to time t is the area under the velocity curve up to time t. By looking at the
areas of triangles, we found out that s(t) = 5t2. If you look closely, you’ll observe that 10t is the
derivative of 5t2, and 5t2 is an antiderivative of 10t, since∫

10t dt = 10

(
1

2
t2
)

+ C

= 5t2 + C.

Now let’s ask the following question: How far have we driven between time t = 2 and t = 4? We4

could shade in the following area.5

v(t) (km/hr)

t (hr)
2 4

20

40

6

We could calculate this using the formula for the area of a trapezoid. But it turns out that there7

is a simpler way which is very important in calculus. We know that s(t) measures the area under8

the velocity curve, but starting at t = 0. What do we do when we start at t = 2?9

The key is to look at the blue trapezoid as the difference of two areas, as shown in Figure 9.8. Most10

labels have been removed to make the geometry easier to see.11

As you can see, if you take the area of the large triangle, A2, and subtract off the area of the small12

triangle, A3, you get the area of the trapezoid, which is the distance traveled between time t = 213

and t = 4. Take a moment to really understand this from the figures.14
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2 4

Area = A1.

2 4

Area = A2.

2 4

Area = A3.

= −

Figure 9.8: One area as the difference of two others.

Why is this significant? Because the areas A2 and A3 have their left endpoints at t = 0. This means
that A2 = s(4), the displacement from time t = 0 to time t = 4, and A3 = s(2). But we know what
s(t) is, so we can compute the area A1.

s(t) = 5t2

A1 = A2 −A3

= s(4)− s(2)

= 5(42)− 5(22)

= 80− 20

= 60.

Of course there is nothing special about t = 2 and t = 4, so we could say that the area under the15

velocity curve from t = a to t = b is just s(b)− s(a). The same logic applies.16

Now let’s write this using antiderivative notation. We know that the displacement is the area under
the velocity curve, but it is also an antiderivative of the velocity. So we write∫ b

a
v(t) dt = s(b)− s(a),

which we read as “the area under the velocity curve from time t = a to t = b is equal to s(b)−s(a).”17

This is what we just observed, but we are using our new notation to describe it.18

Thus we have the following geometric interpretation of derivatives and antiderivatives.19

The... is used for...

derivative finding slopes of tangent lines.

antiderivative finding areas under curves.

20

We observed this at the very beginning, but now we have developed calculus tools to find slopes21

and areas. It was easy to do this using formulas from geometry when we only considered constant22

or linear velocities, but now we can find slopes and areas for a very large group of functions –23

functions where there are no simple geometrical formulas to aid us.24
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By considering velocity and displacement, we were able to write∫ b

a
v(t) dt = s(b)− s(a).

But a similar statement can be made for other functions. The important point is that s(t) is an25

antiderivative of v(t). That’s all we needed to make this work. Let’s restate this in terms of x, since26

that’s how it’s usually stated.27

Fundamental Theorem of Calculus, Part I

Let f(x) be given, and suppose that F (x) is an antiderivative of f(x). Then
for a and b in the domain of f(x),∫ b

a
f(x) dx = F (b)− F (a).

28

A word on notation. An antiderivative written in the form∫
f(x) dx

is called an indefinite integral, and an antiderivative written in the form∫ b

a
f(x) dx

is called a definite integral. It is “definite” since you are specifying the interval [a, b], so when29

no interval is specified, it is “indefinite.”30

Very often, the word “integrate” is used to mean the same thing as “antidiffereniate,” and “integral”31

is used for “antiderivative.”32
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Example 133

Find the area underneath f(x) = sin(x) and above the x-axis on the interval [0, π], as shown in
Figure 9.15. A good first step is to make a reasonable guess at the area. Looking at the right in

y

x

1

π

y

x

1

π

Figure 9.9: Area under f(x) = sin(x).

Figure 9.15, you can see a dark blue triangle which fits inside the area, which has area

1

2
(π)(1) ≈ 1.57.

Further, the area sits inside the blue rectangle, which has area π ≈ 3.14. So the total area under34

sin(x) is between 1.57 and 3.14, but closer to 1.57.35

Now let’s use calculus. We use The Fundamental Theorem of Calculus with f(x) = sin(x), a = 0,
and b = π. Then ∫ π

0
sin(x) dx = F (π)− F (0),

where F (x) is any antiderivative of sin(x). But we know that − cos(x) is an antiderivative of sin(x),
and so ∫ π

0
sin(x) dx = − cos(π)− (− cos(0))

= −(−1)− (−1)

= 2.

This fits well with our guesstimate, so we can be confident in our answer. The answer turned out36

to be very simple, but it is important to note that there is no simple geometrical formula we could37

have used to get 2. Calculus is really needed here, as it is for calculating most areas.38
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Example 239

Find the area of the shaded regions bounded by f(x) = sin(x) on the interval [0, 2π], as shown in40

Figure 9.10.41

y

x

1

π 2π

Figure 9.10: Area bounded by f(x) = sin(x).

We know from the previous problem that the answer should be 4, since there are two regions of
area 2. But remember that regions below the x-axis make negative contributions to the area. So if
we use the Fundamental Theorem of Calculus with a = 0 and b = 2π, we get∫ 2π

0
sin(x) dx = − cos(2π)− (− cos(0))

= −1− (−1)

= 0.

In other words, the areas cancel each other out, since there are two identically shaped regions, but42

one lies above the x-axis, and the other lies below the x-axis.43
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Example 344

Find the area below the curve f(x) = 4− x2 and above the x-axis, as shown in Figure 9.11.45

y

x

1

y

x

1

Figure 9.11: Area bounded by f(x) = 4− x2.

We can use the Fundamental Theorem of Calclulus here with f(x) = 4 − x2. From the figure, it46

looks like we can use a = −2 and b = 2. To confirm this, we need to see where f(x) crosses the47

x-axis. Solving f(x) = 4− x2 = 0 gives us x = ±2.48

We can make a few guesstimates by looking at the right of Figure 9.11. The area is larger than
the area of the blue triangle, which is (4 · 4)/2 = 8, but smaller than the area of the blue rectangle,
which is 16. We can visually see that it should be closer to 8 than to 16. To use the Fundamental
Theorem of Calculus, we need an antiderivative of f(x) = 4 − x2. Using the Inverse Power Rule,

we can use F (x) = 4x− 1

3
x3. Then∫ 2

−2
(4− x2) dx = F (2)− F (−2)

= 4 · 2− 1

3
· 23 −

(
4(−2)− 1

3
(−2)3

)
= 8− 8

3
−
(
−8−

(
−8

3

))
= 8− 8

3
+ 8− 8

3

= 16− 16

3

=
48

3

=
32

3
≈ 10.7

This is consistent with our guesstimates. Here, finding an antiderivative is the easy part. It takes49

several steps to evaluate F (2)− F (−2), so you need to be very careful.50

There is an alternative way to approach this problem which cuts down on the algebra. As you can51

see on the right of Figure 9.12, the region we’re looking at is symmetrical, so we can find the area52

of half the region and then multiply by 2.53
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y

x

1

y

x

1

Figure 9.12: Using symmetry.

How will this help? The calculation is identical to the one we just made, except we use a = 0.∫ 2

0
(4− x2) dx = F (2)− F (0)

= 4 · 2− 1

3
· 23 −

(
4 · 0− 1

3
· 03
)

= 8− 8

3
− 0

=
24

3
− 8

3

=
16

3

You can see how using a = 0 makes the calculations a lot simpler. Now we just need to double the54

area of one half of the region, and so the total area is 2 · 16

3
=

32

3
. As you can see, it is a good idea55

to take advantage of a symmetrical region so the calculations become easier.56
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Example 457

Find the area above the x-axis and below the curve y = |x| on the interval [−2, 3]. See Figure 9.13.58

y

x
−2 3

1

Figure 9.13: Area under y = |x|.

While we can just find the area of the triangles, let’s see how using calculus would work. Thus, we

want to find

∫ 3

−2
|x| dx. The difficulty lies in finding an antiderivative of |x|. Since an antiderivative

of x is
1

2
x2, you might be tempted to choose

∣∣∣∣12x2
∣∣∣∣ . But since x2 is always positive, then

∣∣∣∣12x2
∣∣∣∣ =

1

2
x2,

and so the derivative of

∣∣∣∣12x2
∣∣∣∣ is x, not |x|.59

So here, we have to go back to the piecewise definition of y = |x|:

y =

{
x, x ≥ 0,

−x, x < 0.

This means we can break apart the integral into two separate parts, using the piecewise definition.
Because we do know how to take antiderivatives of x and −x. And so∫ 3

−2
|x| dx =

∫ 0

−2
(−x) dx+

∫ 3

0
x dx.

For the first integral, we use F (x) = −1

2
x2, so

∫ 0

−2
(−x) dx = F (0)− F (−2)

= −1

2
· 02 −

(
−1

2
(−2)2

)
= 0− (−2)

= 2.
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For the second integral, we use F (x) =
1

2
x2, so

∫ 3

0
x dx = F (3)− F (0)

=
1

2
· 32 −

(
−1

2
· 02
)

=
9

2
.

Putting it all together, we get ∫ 3

−2
|x| dx =

∫ 0

−2
(−x) dx+

∫ 3

0
x dx

= 2 +
9

2

=
4

2
+

9

2

=
13

2
.

What this example illustrates is that you can break up integrals if you have to. In other words, you
can always use an intermediate point. Using integral notation, when a ≤ b ≤ c, then it is always
the case that ∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx.
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Homework60

1. Consider the region below the curve f(x) = sin(x) + cos(x) + 2 and above the x-axis on the61

interval [0, 2π].62

y

x

2

4

2ππ

Figure 9.14: Area under f(x) = sin(x) + cos(x) + 2.

(a) Visually, it looks like the area of this region is about half the area of the rectangular63

grid. Calculate this guesstimate for the area.64

(b) Using calculus, find the exact area. Is it close to your guesstimate?65

2. Consider the function f(x) = 16− x4. Graph this on desmos. We will be looking at the area66

above the x-axis.67

(a) By drawing a triangle inside and a rectangle outside this region, find lower and upper68

guesstimates for the area. See Example 3.69

(b) By using symmetry appropriately, calculate the area of this region.70

(c) Verify that the area lies between your two guesstimates.71
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3. Consider the function defined below.

f(x) =

{
x+ 2, x < 1,

−x+ 4, x ≥ 1

(a) Using basic geometry formulas, find the area bounded by f(x) and the x-axis on the72

interval [−4, 3]. Be careful about negative areas.73

(b) By writing the area as two separate integrals, compute the area using calculus.74

y

x
1

1

Figure 9.15: Area bounded by f(x) and the x-axis.
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Solutions75

1. (a) The rectangle has dimensions 4 by 2π, and so half of this is

1

2
· 4 · 2π = 4π.

(b) An antiderivative for f(x) is − cos(x) + sin(x) + 2x, so the area is∫ 2π

0
(sin(x) + cos(x) + 2) dx = (− cos(2π) + sin(2π) + 2(2π))− (− cos(0) + sin(0) + 2(0))

= (−1 + 0 + 4π)− (−1 + 0 + 0)

= 4π.

2. (a) The graph crosses the x-axis at −2 and 2, which you get by solving 16− x4 = 0. So the
triangle has a base of 4 and a height of 16, so its area is

1

2
· 4 · 16 = 32.

The rectangle has a base of 4 and a height of 16, and so has area 4 · 16 = 64. Thus, the76

area of the region lies between 32 and 64.77

(b) Since the region is symmetrical about the y-axis, we can find the area of half of the

region and multiply by 2. An antiderivative for 16− x4 is 16x− 1

5
x5.

2

∫ 2

0
(16− x4) dx = 2

(
16(2)− 1

5
· 25 −

(
16(0)− 1

5
· 05
))

= 2

(
32− 32

5

)
= 2

(
160

5
− 32

5

)
=

256

5
= 51.2.

(c) We observe that 32 < 51.2 < 64, so the area lies in the appropriate range.78

3. (a) We can just count squares, or divide the region into triangles and trapezoids. We have

an area of 2 below the x-axis, and an area of
17

2
above the y-axis. Subtracting, we have

an area of
17

2
− 2 =

17

2
− 4

2
=

13

2
.

(b) We write the area as the sum of two integrals:∫ 1

−4
(x+ 2) dx+

∫ 3

1
(4− x) dx.
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For the first, we have an antiderivative of
1

2
x2 + 2x, so that

∫ 1

−4
(x+ 2) dx =

(
1

2
· 12 + 2 · 1−

(
1

2
(−4)2 + 2(−4)

))
=

1

2
+ 2− 8 + 8

=
5

2
.

For the second integral, we have an antiderivative of 4x− 1

2
x2, so that

∫ 3

1
(4− x) dx =

(
4 · 3− 1

2
· 32 −

(
4 · 1− 1

2
· 12
))

= 12− 9

2
− 4 +

1

2
= 4.

Adding these two areas, we get
5

2
+

8

2
=

13

2
.
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9.4 The Area Function1

Closely related to areas are area functions. Let’s begin with an example. We see below in Figure2

9.16 part of the graph of f(x) =
1

x
.3

y

x
1

1

x

Figure 9.16: An area function.

First you need a starting point, which is x0 = 1 in this case. You can use any value in the domain
of the function. Often x0 = 0 is easy to use, but our function is not defined there. Then you need

a function, which is f(x) =
1

x
in our case. With these you can define the area function

A(x) =

∫ x

x0

f(u) du,

which in our case is

A(x) =

∫ x

1

1

u
du.

What this means is that A(x) gives you the area under a curve f(x) and above the x-axis, measured
starting from the point x = x0. We use the variable u since it would be confusing to write

A(x) =

∫ x

x0

f(x) dx,

because on one hand we’re using x to represent a number on the x-axis, and on the other hand,4

we’re using x as a variable in a function.5

Let’s take a moment to see why we can do this. Let’s compute

∫ 2

0
2u du. Remember, the “du”

means we’re using the variable u in our functions. Then u2 is an antiderivative for 2u, and so∫ 2

0
2u du = 22 − 02 = 4.

But if we used a different variable, say “x,” then an antiderivative of 2x would be x2, and so∫ 2

0
2x dx = 22 − 02 = 4.
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We get the same answer either way, since we’re always plugging back into a function and evaluating.
However, notice that ∫

2u du = u2 + C,

∫
2x dx = x2 + C.

So when evaluating an indefinite integral, your answer will be in terms of whatever variable you’re6

using. But when evaluating a definite integral, as we just saw, you’ll always get the same answer7

no matter what variable you use.8

So using “u” in

A(x) =

∫ x

1

1

u
du

won’t affect our answer. So let’s work this out, remembering that lnu is an antiderivative of 1/u.

A(x) =

∫ x

1

1

u
du

= lnx− ln 1

= lnx.

The important observation here is that

A′(x) =
1

x
= f(x).

Notice that since a = 1 and b = x, our final answer is in terms of x.9

But what if we used a different x0 instead? Like x0 = 2? Let’s see.

A(x) =

∫ x

2

1

u
, du

= lnx− ln 2.

So we get a slightly different area function, since we’re starting to measure area from a different
place. But we still have

A′(x) =
1

x
= f(x).

We summarize this as follows.10

Fundamental Theorem of Calculus, Part II

Let f(x) be a continuous function, and let x0 be a point in the domain of
f(x). If the area function A(x) is defined by

A(x) =

∫ x

x0

f(u) du,

then
A′(x) = f(x).

11
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Again, we emphasize that A(x) will depend upon what you choose for x0, but whatever you choose,12

you will always get A′(x) = f(x). We do need to assume that f(x) is continuous, but this will be13

the case with all of our examples. We only need to include it for mathematical correctness, and14

you will notice this assumption if you look at other resources.15

Often, the Fundamental Theorem of Calculus is stated without saying anything about area func-
tions. Instead, it is stated as:

d

dx

∫ x

x0

f(u) du = f(x).

This is equivalent to the way it is stated above, but you should be aware if you look at other16

resources.17

Combined with the Fundamental Theorem of Calculus, Part I, we have essentially this. If you18

have a function f(x), you antidifferentiate to get the corresponding area function. And if you are19

given an area function A(x), you take the derivative to see what function it corresponds to. This20

is another way to say that differentiation and antidifferentiation are inverse processes.21

Another way to say it is this. Suppose I give you a function, f(x). I ask you two questions. First,22

find an antiderivative for f(x). Next, write a function which calculates the area under the graph23

of f(x) from a given starting point. Is there any reason to think that these two questions have the24

same answer? This is why the Fundamental Theorem of Calculus is so important.25

It is also important to point out that we didn’t actually prove the Fundamental Theorem of Calculus,26

but rather saw why it should be true through examples. That’s good enough for our purposes. It27

is more important to understand what it means than how to prove it.28
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Example 129

We’ll create an area function for f(x) = x2 and x0 = −1. The graph of f(x) = x2 is shown at the30

left of Figure 9.17.31

y

x
1

1

y

x
−1 2

1

y

x
−2 −1

1

Figure 9.17: Areas bounded by f(x) = x2.

A(x) =

∫ x

−1
f(u) du

=

∫ x

−1
u2 du

=
1

3
u3
∣∣∣∣x
−1

New notation for evaluating.

=
1

3
(x3 − (−1)3)

=
1

3
(x3 + 1).

Note the new notation for evaluating. What is this notation good for? Suppose we wanted to find
the area underneath f(x) = x2 but above the x-axis on the interval [−1, 2]. On the one hand, this
is just

A(2) =
1

3
(23 + 1) = 3.

Area functions are useful when you are evaluating many different areas. But if you just have
to evaluate one area, which is often the case, this new notation lets you skip the area function
altogether. You can just write∫ 2

−1
f(x) dx =

∫ 2

−1
x2 dx

=
1

3
x3
∣∣∣∣2
−1

New notation for evaluating.

=
1

3
(23 − (−1)3)

= 3.

Note that because our limits are numbers, we can use x as the variable. This is usually how it’s32

done, but you can continue to use u if you want. Again, you need to be familiar with the standard33
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notation in looking at other resources. If you need to find an area function, you’ll need to use both34

x and u. But if you’re just looking for an area, you can just use x. You should also be aware that35

many books use t instead of u, but we use t for time only.36

Now let’s look at the area underneath the parabola and above the x-axis on the interval [−1,−2].
So if we use the area function, we get that the area is

A(−2) =
1

3
((−2)3 + 1) = −7

3
.

But our area is above the x-axis, so how can it be negative? This is because we are measuring our
area starting at x = −1, and have to go along the negative x-direction to get the area. Notice that

A(−2) =

∫ −2
−1

f(u) du.

Now let’s evaluate (using our new notation) the area under the parabola and above the x-axis using
a = −2 and b = −1 : ∫ −1

−2
f(x) dx =

∫ −1
−2

x2 dx

=
1

3
x3
∣∣∣∣−1
−2

=
1

3
((−1)3 − (−2)3)

=
1

3
(−1 + 8)

=
7

3
.

This may look at little odd, but it is necessary. In geometry, areas were always positive. But37

in calculus, they can be negative. Because the Fundamental Theorem of Calculus is the central38

result relating differentiation/finding slopes to antidifferentiation/finding areas, it is only true if we39

introduce the concept of a negative area. So whether an area is positive or negative depends on40

two things: (1) whether the region is above or below the x-axis, or whether the region is traversed41

from the right or from the left. We see examples which summarize this in Figure 9.18.42
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y

x

+ area

y

x

− area

y

x

− area

y

x

+ area

Figure 9.18: Above/below x-axis, traversing right/left.

Our example also showed that∫ −1
−2

f(x) dx =
7

3
= −

(
−7

3

)
= −

∫ −2
−1

f(x) dx.

This can be written in general; when a and b are in the domain of f(x), then∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

This is because whether the area is above or below the x-axis, one integral measures the area from43

left to right, and the other measures from right to left. So they must be opposites of each other.44
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Example 245

Write an area function A(x) for f(x) = sin(x) with x0 = 0.46

1. Verify that A′(x) = f(x).47

2. Find all the values of x where the area function is equal to 0.48

3. Explain, using the graph of sin(x), why this makes sense geometrically.49

Solution50

To find the area function, calculate∫ x

0
sin(x) dx = − cos(x)

∣∣∣∣x
0

= − cos(x)− (− cos(0))

= 1− cos(x)

1.
d

dx
(1− cos(x)) = 0− (− sin(x)) = sin(x).

2. Solving A(x) = 0 is the same as solving cos(x) = 1. This occurs at all multiples of 2π: 0, 2π,51

4π, etc., as well as −2π, −4π, etc.52

3. Look at the graph of sin(x) on desmos. You will notice that starting at x0 = 0 and going in53

either direction, every time you hit a multiple of 2π, you’ll see that the positive areas exactly54

cancel out with the negative areas. Thus, the cumulative area determined by A(x) must be55

0.56
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Example 357

Suppose f(x) is a function such that

∫ 2

0
f(x) dx = −4. What is

∫ 0

2
f(x) dx?58

∫ 0

2
f(x) dx = −(−4) = 4, since it still traces the area over the interval [0, 2], but in the opposite59

direction.60

Example 461

Find
d

dx

∫ x

2
arctan(u) du.62

From the Fundamental Theorem of Calculus, this is just arctan(x).63

Example 564

Find
d

dx

∫ 3

x
e2u dxu65

It is very important that the integral matches the Fundamental Theorem of Calculus exactly. The
x must be in the upper limit, not the lower. So we need to switch first, as seen below.

d

dx

∫ 3

x
e2u du = − d

dx

∫ x

3
e2u du

= −e2x.
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Example 666

Consider the function f(x), graphed below.67

y

x
1

1

Figure 9.19: Evaluating areas.

Using simple geometry (no integrals needed), evaluate the following.68

1.

∫ 4

−4
f(x) dx.69

2.

∫ 2

−2
f(x) dx.70

3.

∫ 0

4
f(x) dx.71

4.

∫ −2
3

f(x) dx.72

5.

∫ 3

3
f(x) dx.73
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Divide the areas into triangles and trapezoids. Remember that areas below the x-axis are negative,74

and traversing an interval from right to left changes the sign of the area.75

Solutions76

1. 4.77

2. 0.78

3. −8.79

4. −5

2
.80

5. 0.81
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Homework82

1. Find an area A(x) function using x0 = 1 and f(x) =
1

x4
. Verify that A′(x) = f(x).83

2. Graph f(x) = arcsin(sin(x)) on desmos. Let A(x) be the area function for f(x) with x0 = 0.84

Using geometry, find all values of x such that A(x) = 0.85

3. Suppose f(x) is a function such that

∫ 6

2
f(x) dx = 10. What is

∫ 2

6
f(x) dx?86

4. Find
d

dx

∫ x

3
ln(x2 + 1) dx.87

5. Find
d

dx

∫ 7

x
sin(3x− π) dx.88

6. Consider the function f(x), graphed below.89

y

x
1

1

Figure 9.20: Evaluating areas.

Using simple geometry (no integrals needed), evaluate the following.90

(a)

∫ 4

−4
f(x) dx.91

(b)

∫ 4

−2
f(x) dx.92

(c)

∫ 0

4
f(x) dx.93

(d)

∫ −2
2

f(x) dx.94

(e)

∫ 1

1
f(x) dx.95
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Solutions96

1.

A(x) =

∫ x

1
u−4 du

= −1

3
u−3

∣∣∣∣x
1

= −1

3
x−3 +

1

3

Then

A′(x) = −1

3
(−3x−4) =

1

x4
.

2. This problem is very similar to Example 2. Using the same logic, we have that A(x) = 097

when x is a multiple of 2π, including negative multiples as well.98

3. ∫ 2

6
f(x) dx = −

∫ 6

2
f(x) dx = −10.

4. Using the Fundamental Theorem of Calculus, this is just ln(x2 + 1).99

5. Using the Fundamental Theorem of Calculus,

d

dx

∫ 7

x
sin(3x− π) dx = − d

dx

∫ x

7
sin(3x− π) = − sin(3x− π).

6. (a) 7.100

(b) 5.101

(c) 0.102

(d) −7.103

(e) 0.104
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9.5 The Inverse Chain Rule1

There are many techniques for finding antiderivatives. The first one is called using substitution,2

which we’ll call the Inverse Chain Rule.3

Let’s review the Chain Rule by looking at
d

dx
sin(x2). We use f(x) = sin(x) and g(x) = x2, so that

f ′(x) = cos(x) and g′(x) = 2x. So

d

dx
sin(x2) = f ′(g(x))g′(x)

= cos(g(x)) · 2x
= 2x cos(x2).

Using antiderivative notation, we would write∫
2x cos(x2) dx = sin(x2) + C.

We can generalize to any function composition by writing4 ∫
f ′(g(x))g′(x) dx = f(g(x)) + C. (9.1)5

How would we use this if we were just given6 ∫
2x cos(x2) dx ? (9.2)7

We look at the integrand, which is the function to be integrated. Thus, f ′(g(x))g′(x) is the8

integrand in (9.1), and 2x cos(x2) is the integrand in (9.2).9

Notice in (9.1) that you see a g(x) and a g′(x) in the integrand. That’s our starting point. Looking10

at 2x cos(x2), can you see a g(x) and a g′(x)? Yes, you’ve got x2 and 2x, and 2x is the derivative11

of x2. So we know that g(x) = x2.12

How do we use this information? We make what is called a substitution, which is just g(x). And13

just like with the Fundamental Theorem of Calculus, we need a different letter, which is usually u.14

In other words, we substitute u = x2. You can see why we don’t use x again, since writing x = x215

is very confusing.16

So u = x2 and
du

dx
= 2x. Let’s rewrite using this substitution.∫

2x cos(x2) dx =

∫
cos(x2) · 2x dx

=

∫
cos(u) · du

dx
· dx

=

∫
cos(u) du.
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It might look a little odd to cancel out the dx’s. But this is an example of why the notation
du

dx
is17

sometimes used instead of u′(x). It makes the substitution process much easier.18

Now the integral has become a lot simpler. In fact, this is one of the basic antiderivatives. So∫
cos(u) du = sin(u) + C

= sin(x2) + C. substituting back, since u = x2
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Example 119

Find

∫
(1− 2x)ex−x

2
dx.20

We first look at the integrand and see if can spot a g(x) and g′(x). Yes, g(x) = x−x2 works, so we

use the substitution u = x− x2, so
du

dx
= 1− 2x. Now rewrite.∫

(1− 2x)ex−x
2
dx =

∫
ex−x

2
(1− 2x) dx

=

∫
eu · du

dx
· dx

=

∫
eu du

= eu + C

= ex−x
2

+ C.

You should notice that done correctly, substituting will eliminate all the x’s, so the only variable21

will be u. If this does not happen, then you need to try another substitution.22

There is another way to write out the substitution, which you will find in most other resources.23

It’s the same algebra, though done in a slightly different order.24

We start the same way: substitute u = x− x2, so that
du

dx
= 1− 2x. Now solve for du.

du

dx
= 1− 2x

du

dx
· dx = (1− 2x) dx

du = (1− 2x) dx

So when we rewrite, we get ∫
(1− 2x)ex−x

2
dx =

∫
ex−x

2
(1− 2x) dx

=

∫
eu du

= eu + C

= ex−x
2

+ C.

Basically, we canceled out the dx’s first by solving for du. We’ll stick to this method, as it is more25

commonly used.26
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Example 227

Find

∫
sin(3x) dx.28

At first glance, it looks like we can’t find both g(x) and g′(x). We might think g(x) = 3x would29

work, but g′(x) = 3, and we don’t see a 3.30

But since 3 is a constant, we can multiply and divide by 3 as follows.∫
sin(3x) dx =

∫
1

3
· 3 sin(3x) dx

=
1

3

∫
3 sin(3x) dx.

Remember, we can factor constants out of derivatives and integrals, so the last step is legitimate.

Now we have g′(x), so we can make the substitution u = 3x, so that
du

dx
= 3 and du = 3 dx.

Rewriting, we get

1

3

∫
3 sin(3x) dx =

1

3

∫
sin(3x) · 3 dx

=
1

3

∫
sin(u) du

=
1

3
(− cos(u)) + C

= −1

3
cos(3x) + C

IMPORTANT!!!!31

This can ONLY be done because 3 is a number. You cannot do this otherwise.∫
cos(x2) dx =

∫
1

2x
· 2x cos(x2) dx

=
1

2x

∫
2x cos(x2) dx. DON’T DO THIS!!!

So be careful. Only use this trick if your derivative is off by a CONSTANT MULTIPLE.32
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We summarize the steps below.33

Inverse Chain Rule

To integrate

∫
f ′(g(x))g′(x) dx:

1. Look for a g(x) and g′(x) pair in the integrand – g′(x) can be off by a
constant multiple;

2. If g′(x) is off by a constant multiple, multiply and divide by this con-
stant and factor out;

3. Substitute u = g(x), and solve for du = g′(x) dx;

4. Rewrite the integral in terms of u; all x’s should disappear;

5. Find the antiderivative with respect to u;

6. Substitute back to rewrite in terms of x only.

34

You’ll only get better at substitution by practicing. The main trick is to spot g(x) and g′(x). Once35

you do this, just follow the steps one at a time. Be sure to have your table of antiderivatives handy.36
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Example 337

Find

∫
x3(x4 + 2)5 dx.38

Let’s go one step at a time.39

1. We know that the derivative of x4 + 2 is 4x3, which is good, since we’re only off by a constant40

multiple of 4.41

2. We now rewrite: ∫
1

4
· 4 · x3(x4 + 2)5 dx =

1

4

∫
4x3(x4 + 2)5 dx.

3. We now substitute u = x4 + 2 so that
du

dx
= 4x3 and du = 4x3 dx.42

4. Rewrite again:

1

4

∫
4x3(x4 + 2)5 dx =

1

4

∫
(x4 + 2)5 · 4x3 dx

=
1

4

∫
u5 du

5. Now take the antiderivative.

1

4

∫
u5 du =

1

4

(
1

6
u6
)

+ C

=
1

24
u6 + C.

6. Finally, substitute back. ∫
x3(x4 + 2)5 dx =

1

24
u6 + C

=
1

24
(x4 + 2)6 + C.



Section 9.5 � The Inverse Chain Rule 323

Example 443

Find

∫
lnx

x
dx.44

1. Because the derivative of lnx is
1

x
, we choose g(x) = lnx.45

2. We’ve got it exactly, no need to adjust.46

3. Now substitute u = lnx, so that du =
1

x
dx.47

4. Rewrite. ∫
lnx · 1

x
dx =

∫
u du.

5. Taking the antiderivative, we have ∫
u du =

1

2
u2 + C.

6. Substituting back, we get ∫
lnx

x
dx =

1

2
u2 + C

=
1

2
(lnx)2 + C.
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Example 548

Find

∫
1√

1− 4x2
dx.49

This problem is similar to Example 2. We notice that it looks pretty close to the derivative of50

arcsin(x), except for the factor of 4.51

1. Let’s see what happens if we make g(x) = 2x. Then g′(x) = 2. Remember, we can be off by52

a constant multiple.53

2. So we can rewrite as
1

2

∫
2√

1− 4x2
dx.

3. Now substitute u = 2x, so that 4x2 = (2x)2 = u2 and du = 2 dx.54

4. Rewriting again, we have

1

2

∫
2√

1− 4x2
dx =

1

2

∫
1√

1− (2x)2
· 2 dx

=
1

2

∫
1√

1− u2
du

Can you see why using g(x) = 2x was a good idea? To get an arcsin(x) in our answer, the55

derivative has to match exactly. In a sense, the substitution u = 2x allows us to get rid of56

the factor of 4. This technique is useful for the derivatives of inverse trigonometric functions.57

5. Now we can take the antiderivative.

1

2

∫
1√

1− u2
du =

1

2
arcsin(u) + C.

6. Substituting back, we get ∫
1√

1− 4x2
dx =

1

2
arcsin(u) + C

=
1

2
arcsin(2x) + C.
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Homework58

1. Find

∫
x5(1− x6)3 dx.59

2. Find

∫
3x2 sin(x3) dx.60

3. Find

∫
e5x dx.61

4. Find

∫
1

1 + 9x2
dx.62

5. Find

∫
(lnx)2

3x
dx.63

6. Find

∫
x 3x

2
dx.64

7. Find

∫
ex cos(ex) dx.65

8. Find

∫
ex√

1− e2x
dx.66
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Solutions67

1. Use u = 1 − x6, so that
du

dx
= −6x5 and du = −6x5 dx. We’re off by a factor of −6, so we

compensate and then substitute.∫
x5(1− x6)3 dx =

1

−6

∫
−6x5(1− x6)3 dx

= −1

6

∫
(1− x6)3(−6x5 dx)

= −1

6

∫
u3 du

= −1

6
· 1

4
u4 + C

= − 1

24
(1− x6)4 + C.

2. Use u = x3, so that
du

dx
= 3x2 and du = 3x2 dx. It’s an exact match, so no need to compensate.∫

3x2 sin(x3) dx =

∫
sin(x3) · 3x2 dx

=

∫
sin(u) du

= − cos(u) + C

= − cos(x3) + C.

3. We use u = 5x so that
du

dx
= 5 and du = 5 dx. We’re off by a factor of 5, we we’ll need to

compensate. ∫
e5x dx =

1

5

∫
5e5x dx

=
1

5

∫
e5x · 5 dx

=
1

5

∫
eu du

=
1

5
eu + C

=
1

5
e5x + C.
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4. This looks like an arctan(x) will be involved. We rewrite as

∫
1

1 + (3x)2
dx, and so we use

u = 3x. Then
du

dx
= 3 and du = 3 dx. We’re off by a factor of 3.∫

1

1 + 9x2
dx =

1

3

∫
3 · 1

1 + (3x)2
dx

=
1

3

∫
1

1 + (3x)2
· 3 dx

=
1

3

∫
1

1 + u2
du

=
1

3
arctan(u) + C

=
1

3
arctan(3x) + C.

5. We use u = lnx, so that
du

dx
=

1

x
and du =

1

x
dx. We don’t need the 3, so we just factor it

out. ∫
(lnx)2

3x
dx =

1

3

∫
(lnx)2 · 1

x
dx

=
1

3

∫
u2 du

=
1

3
· 1

3
u3 + C

=
1

9
(lnx)3 + C.

6. We use u = x2, so that
du

dx
= 2x and du = 2 dx. We’re off by a factor of 2.∫

x 3x
2
dx =

1

2

∫
2x 3x

2
dx

=
1

2

∫
3x

2 · 2x dx

=
1

2

∫
3u du

=
1

2
· 3u

ln 3
+ C

=
3x

2

2 ln 3
+ C.
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7. We use u = ex, so that
du

dx
= ex and du = ex dx. We’ve got an exact match.∫

ex cos(ex) dx =

∫
cos(ex) · ex dx

=

∫
cos(u) du

= sin(u) + C

= sin(ex) + C.

8. In the denominator, we see an expression which looks like an arcsin(x) is involved. Rerwriting

as

∫
ex√

1− (ex)2
dx, we use the substitution u = ex. Then

du

dx
= ex and du = ex dx, which

gives us an exact match. ∫
ex√

1− e2x
dx =

∫
1√

1− (ex)2
· ex dx

=

∫
1√

1− u2
du

= arcsin(u) + C

= arcsin(ex) + C.
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