Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Grammars, Regular Expressions, and Finite-State
Automata

Vincent J. Matsko

WFNMC 2010, Riga, Latvia

27 July 2010



Problem 1

The First Problem

Consider the following method for creating strings of 1's. Begin
with the symbol x, and apply the following replacement rules as
many times as desired and in any order.

x+— 111x (1)
x— 11111x  (2)
x +— 111 (3)

How many strings of one or more 1's CANNOT be obtained by
applying these rules?



Problem 1

Solution to the First Problem

Key idea: this is the Postage Stamp problem.

The maximum number of ones which cannot be produced by (1)
and (2) onlyis(3—-1)(5—-1)—-1=7.

Quick enumeration: only strings of 1, 2, 4, or 7 ones cannot be

obtained by using (1) and (2). Since the process ends with an
application of (3), strings of 4, 5, 7, or 10 ones cannot be obtained.

Thus, only strings of 1, 2, 4, 5, 7, or 10 cannot be produced by
using the above rules.



Problem 1

Representation of the Solution to the First Problem

We may choose 3 or 5 ones as many times as we like (perhaps zero
times), followed by three ones:

(111V 11111)*111.

This expression is called a regular expression.

Here, the disjunction V means there is a choice (exclusive or), the
* means the expression may be repeated zero or more times, and
juxtaposition means concatenation.

N\ is the empty string.



Problem 2

The Second Problem

Consider the following method for creating strings of 0's and 1's.
Begin with the symbol x, and apply the following replacement
rules as many times as desired and in any order.

x—1 (1) y—1x (5)
x—0x (2) z—0 (6)
xoly (3) 20y (1)
y—0z (4) z—1z (8)

The process ends when only 0's and 1's remain. For example,
x 2 1y % 102 4 1012+ 1010.

Describe all binary strings which can be produced by these rules.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Solution to the Second Problem (1)

x—1 (1) y—1x (5
x—0x (2) z—0 (6)
xely (3) 20y (1)
y—0z (4) z—1z (8)

A consistent interpretation of these rules is:

e “x" means that we have read in a string which is 0 mod 3 so
far,

e “y" means that we have read in a string which is 1 mod 3 so
far, and

e “Z" means that we have read in a string which is 2 mod 3 so
far.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Solution to the Second Problem (2)

x—1 (1) y—1x (5)
x—0x (2) z—0 (6)
x—1ly (3) z—0y (7)
y—0z (4) z—1z (8)

Example:

x is replaced (Rule 3) by 1y (now 1 mod 3).
1y becomes (Rule 4) 10z (now 2 mod 3).
Then, we get (Rule 8) 101z (still 2 mod 3).
Finally, we have (Rule 6) 1010 (now 1 mod 3).



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Solution to the Second Problem (3)

x—1 (1) y—1x (5)
x—0x (2) z—0 (6)
xly (3) 20y (7)
y—0z (4) z—1z (8)

Thus, this grammar describes all strings which represent binary
numbers which are 1 mod 3.

How might we come up with this interpretation? We'll see later!



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (1)

So how can we write a regular expression for those binary strings
congruent to 1 mod 3? Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (2)

So how can we write a regular expression for those binary strings
congruent to 1 mod 3? Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1(0

The next digit can be either a 0 or a 1. Let's look at the O first.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (3)

So how can we write a regular expression for those binary strings
congruent to 1 mod 37 Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1(0---0

We are currently at 2 mod 3, so we must continue. Note that a 1
leaves us at 2 mod 3, so we must eventually add another 0.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (4)

So how can we write a regular expression for those binary strings
congruent to 1 mod 37 Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1(01*0

But even though we need another 0, we may include as many 1's
as we wish as they leave the string at 2 mod 3.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (5)

So how can we write a regular expression for those binary strings
congruent to 1 mod 37 Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1(01*0V 1---1

Now what if the next digit is a 1?7 Then we are at 0 mod 3, and
adding 0's doesn’t change that. So we definitely need another 1.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (6)

So how can we write a regular expression for those binary strings
congruent to 1 mod 37 Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1(01*0 v 10*1)

But although we need another 1, we may include as many 0's as
we like since they leave the string at 0 mod 3.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Representing the Solution to the Second Problem (7)

So how can we write a regular expression for those binary strings
congruent to 1 mod 37 Let's begin with a 1 (preceded, perhaps, by
leading zeroes):

0*1(01*0 v 10*1)*

This leaves us at 1 mod 3, so this process may be repeated as
many times as desired. It may even not be used at all, since 0*1
produces strings which are 1 mod 3.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (1)

Can we make a finite-state machine which describes the strings
which are 1 mod 37

Start state: 0 mod 3; accepting state(s): 1 mod 3.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (2)

See that the string 10010111 (which is 15119) is accepted, while
11001111 (which is 2091p) is not.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (3)

To get to the state 1 mod 3, we must read in any number of Q's
followed by a 1:
0*1.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (4)

Now, how can we leave the state 1 mod 3 and return to it?



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (4)

Now, how can we leave the state 1 mod 3 and return to it?
Either by going right: 01*0,



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (4)

Now, how can we leave the state 1 mod 3 and return to it?
Either by going right: 01*0,
or by going left: 10*1.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (5)

Thus, we leave and return by 01*0 v 10*1.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Alternate Representation of the Solution (6)

This gives us the regular expression we want:

0*1(01*0 v 10*1)*,



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Getting a Perspective

Note that we have already seen an interesting relationship among
e grammars,
e regular expressions, and

e finite-state machines (automata).



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions

Type 3 Grammars

Each rule consists of:

e One non-terminal on the left-hand side, and

e A string with one non-terminal on the right-hand side,
occurring right-most.

x +— 111x (1)
x—11111x  (2)
x+— 111 (3)

Final Comments



Grammars

Type 2 Grammars

Each rule consists of:

e One non-terminal on the left-hand side, and

e A string with one non-terminal on the right-hand side,
occurring anywhere.

x +— 11x1 (1)
x— 11x111  (2)
x — 111 (3)

Note: The grammar is of a different type, but the language
accepted is the same as the previous grammar.



Grammars

More Type 2 Grammars

Each rule consists of:

e One non-terminal on the left-hand side, and

e A string with one non-terminal on the right-hand side,
occurring anywhere.

x+—0x1 (1)
x—01 (2)

What language is accepted by this grammar?



Grammars

More Type 2 Grammars

Each rule consists of:

e One non-terminal on the left-hand side, and

e A string with one non-terminal on the right-hand side,
occurring anywhere.

x+—0x1 (1)
x—01 (2)

What language is accepted by this grammar?

Answer:
{0"1" |n e N*}.

0"1" is not a regular expression, however! (More later.)



Grammars

Type 1 Grammars

Rules cannot shrink strings:

e The length of the left-hand string in a rule is no greater than
the length of the right-hand string.

x — 11x1 (1)
x— 11x111  (2)
x — 111 (3)
Ix — 1111x  (4)

Note: The grammar is of a different type, but the language
accepted is the same as the previous Type 3 grammar.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Type 0 Grammars

Type 0 grammars may shrink strings.

x — 111x (1)
x> 11111x  (2)
x— 111 (3)
111x — x (4)



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Type 0 Grammars

Type 0 grammars may shrink strings.

x — 111x (1)
x+—11111x  (2)
x— 111 (3)
111x — x (4)

Careful!
x 2211111111110 0 1003 1111

Because we can get 4 ones, we can get 7 or 10 ones, also.

x5 11111x &5 11x > 11111.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Basic Syntax

The main elements of regular expressions are:

e Juxtaposition:
001 = {001}.

e Disjunction:
01V 000V 1101 = {01,000,1101}.
o Repetition:

(01)* = {A,01,0101,010101,01010101, ...}



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Some Examples

e An even number of ones (perhaps none):
(11)*

An odd number of ones:

1(11)*

The number of ones is 3 mod 5:

(11111)*111

All strings of zeroes and ones:

0V 1)*



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

More Examples

e Strings with zeroes and an even number of ones:



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

More Examples

e Strings with zeroes and an even number of ones:

(0*10*1)*0*



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions

More Examples

e Strings with zeroes and an even number of ones:

(0*10*1)*0*

e Strings of zeroes and ones with no zeroes adjacent:

Final Comments



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions

More Examples

e Strings with zeroes and an even number of ones:

(0*10*1)*0*

e Strings of zeroes and ones with no zeroes adjacent:

1*(011)*(A v 0)

Final Comments



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

More Examples

e Strings with zeroes and an even number of ones:

(0*10*1)*0*

e Strings of zeroes and ones with no zeroes adjacent:

1*(011)*(A v 0)

e Strings with an even number of zeroes and an even number of
ones:



Regular Expressions

More Examples

e Strings with zeroes and an even number of ones:

(0*10*1)*0*

e Strings of zeroes and ones with no zeroes adjacent:

1*(011)*(A v 0)

e Strings with an even number of zeroes and an even number of
ones:

((00 v 11)*(01 v 10)(00 v 11)*(01 v 10))* (00 v 11)*



Final Comments

The Theorem

The following sets of languages are the same:
e the set of languages described by Type 3 grammars,
e the set of languages described by regular expressions, and

e the set of languages accepted by finite-state machines.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

A Problem Reuvisited

x—1 (1) y—1x (5
x—0x (2) z—0 (6)
x—=1ly (3) z—0y (7)
y—0z (4) z—1z (8)



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

A Problem Reuvisited

x—1 (1) y—1x (5
x—0x (2) z—0 (6)
x—1ly (3) z—0y (7)
y—0z (4) z—1z (8)

Rules 1 and 6 always take you to the accepting state.

0 1



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

A Non-Regular Expression

071" is not a regular expression. Therefore, no Type 3 grammar
can describe this set of strings, nor can a finite-state machine be
built which accepts only those strings. Why?



Final Comments

A Non-Regular Expression

071" is not a regular expression. Therefore, no Type 3 grammar
can describe this set of strings, nor can a finite-state machine be
built which accepts only those strings. Why?

Essentially, finite-state machines only have a finite capacity to
remember.

To accept only the strings 071", an FSM would need to be able to
remember that it read arbitrarily long strings of zeroes so far. This
is not possible with a finite-state machine.



Problem 1 Problem 2 Problem 2, RegEx Problem 2, FSM Grammars Regular Expressions Final Comments

Hint for Problem Three

Sometimes it is useful to derive other rules from those given.

In this problem, it is possible to derive the rule
a— a0

and the rule
ar— al.

Use these additional rules to come up with a complete solution.



	Problem 1
	Problem 2
	Problem 2, RegEx
	Problem 2, FSM
	Grammars
	Regular Expressions
	Final Comments

