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A curve C is said to be an envelope of a family of curves if each curve of the
family is tangent to C. The astroid, described by the equation x2/3 + y2/3 =
k2/3 (k > 0), is well known [1] as being generated by two different families of
curves. The first is a family of line segments, as in Figure 1. A line segment of
length k, sliding without slipping so that its endpoints lie on the coordinate
axes (imagine a ladder sliding down a wall), remains tangent to an astroid.
The astroid is also the envelope of a family of concentric ellipses (as in Figure
2), where the sum of the lengths of the axes is the constant 2k.

Figure 1 Figure 2

As it happens, there is a surprising connection between these two figures,
which will be revealed in the main result of this paper. A related diagram is
one produced by a typical grade school art student on a piece of graph paper:
in the first quadrant, draw lines such that the sum of the x- and y-intercepts
is some constant k > 0, then reflect to the other quadrants. This results in
Figure 3, which can be described by |x|1/2 + |y|1/2 = k1/2. Elimination of
roots from this equation when x, y ≥ 0 results in

x2 − 2xy + y2 − 2kx− 2ky + k2 = 0,

a parabola. Only the part of this parabola with both x ≤ k and y ≤ k is
seen in the first quadrant of Figure 3.
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Figure 3

What do these figures have in common? For a, b,m > 0, define a generic

ellipse E(a, b;m) to be the set of points satisfying
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We refer to the four points (±a, 0) and (0,±b) as the vertices of the generic
ellipse. Note that tangents exist at the vertices only when m > 1. When
m = 1, the vertices are the four corners of a diamond, and are cusps when
0 < m < 1. We refer to E as an m–ellipse.

Each of the figures above illustrates a result about the envelope of a family of
generic ellipses. For example, Figure 2 is a graphical solution to the question:
What is the envelope of the family of 2–ellipses E(a, k − a; 2), where k > 0
and 0 < a < k?

In seeking an equation for such an envelope, a natural question to be asked
is: When are two generic ellipses E1(a1, b1;m1) and E2(a2, b2;m2) tangent?
First note that tangency at vertices may only occur if both m1, m2 > 1 and
either a1 = a2 or b1 = b2. When m1 = m2 > 1, E1 and E2 may only be
tangent at vertices (unless they are the same m1–ellipse), as we will see later.

In turning our attention to tangency at points other than vertices, we assume
that m1 6= m2. Due to symmetry, we consider the case when E1 and E2 are
tangent at (x0, y0) in the first quadrant, so that x0, y0 > 0.
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A routine calculation reveals that the tangent lines to E1 and E2 at (x0, y0)
are given by
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E1 is tangent to E2 at (x0, y0) if these lines are the same, so that
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(Note that if m1 = m2, and if E1 and E2 were tangent at a point which is
not a vertex, so that x0 6= 0 and y0 6= 0, then (1) would imply a1 = a2 and
b1 = b2, and hence E1 and E2 would be identical.)

Now we may solve for x0 and y0 to determine the purported point of tangency:
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Of course it is necessary that (x0, y0) lie on both E1 and E2; substituting
into either of their equations yields
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Thus (3) is a necessary and sufficient condition for E1 and E2 to be tangent
at a point other than a vertex; the point of tangency in the first quadrant is
given by (2). Moreover, E1 lies inside [outside] E2 if m1 > m2 [m1 < m2] (as
is evident by considering Figures 1–3).

Before stating the main result, one more definition is needed. For p 6= 0, the
p–separation between (x1, y1) and (x2, y2) is defined to be

sepp((x1, y1), (x2, y2)) := (|x2 − x1|
p + |y2 − y1|

p)
1

p . (4)

We use this definition for descriptive ease only. For example, in Figure 1,
we can say that the 2–separation between the endpoints of the segments is
constant, since the 2–separation is the usual Euclidean distance. In Figure
2, we can say that the 1–separation between adjacent vertices of the ellipses
is constant, as can be seen by examining (4) with p = 1.
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We are now ready to state the main result.

Theorem: Let m1, k > 0 and p 6= 0 be given. Suppose that the p–separation
between adjacent vertices of an m1–ellipse is k. Then this m1–ellipse is

tangent to the m2–ellipse

|x|m2 + |y|m2 = km2 ,

where m2 is determined by

1

m2

=
1
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+
1

p
. (5)

Before giving the straightforward proof, we look again at Figures 1–3. Figure
1 is an application of our Theorem with m1 = 1 and p = 2. In this case,
we are creating a family of diamonds (1–ellipses) with the property that the
2–separation between adjacent vertices is k; that is, the length of the sides
of the diamonds is k. Since m2 = 2/3 in this case, all such diamonds are
tangent to the astroid

|x|2/3 + |y|2/3 = k2/3,

so that the envelope of a family of such diamonds is an astroid.

We also see that Figure 2 is an application of our Theorem with m1 = 2 and
p = 1. The symmetry of m1 and p in (5) implies that an astroid is also an
envelope of a family of ellipses. Figure 3 illustrates the case m1 = p = 1, with
the expected m2 = 1

2
. Of course there are infinitely many figures possible;

further examples are given after the proof.

For the proof, let m1, k, and p be as described. Suppose that an m1–ellipse
E(a, b;m1) with a, b > 0 is such that the p-separation between adjacent
vertices is k; that is,

ap + bp = kp,

or equivalently,
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= 1. (6)

Then by (3), this m1–ellipse is tangent to E(k, k;m2) precisely when
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Now considering the family of generic ellipses

|x|m + |y|m = 1

for m > 0, it is evident that the point (a/k, b/k) lies on precisely one such
generic ellipse unless the point is a vertex, which is impossible when a, b > 0.
Hence comparison of (6) and (7) results in

p =
m1m2

m1 −m2

,

which is equivalent to (5). This completes the proof of the Theorem.

In Figures 4 and 5, we have p ≥ 1; indeed, the knowledgeable reader will
recognize (4) as the definition of a distance formula satisfying all the usual
properties. However, (4) merely reflects a property of the vertices of a family
of generic ellipses. So when 0 < p < 1, as in Figure 6, we may still employ
(4), being careful to interpret it as an algebraic relationship rather than a
geometric one.

m1 = 2, p = 8, m2 =
8

5

Figure 4
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m1 = 2, p = 2, m2 = 1

Figure 5

m1 = 1, p = 3

4
, m2 =

3

7

Figure 6
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Note that since p > 0, we see from (5) that m1 > m2. Hence, each m1-ellipse
lies inside the m2-ellipse. Interpreting (4) as a strictly algebraic relationship
between vertices of a generic ellipse, why not allow p < 0? Several interesting
envelopes result, as shown below. However, as we still require m1, m2 > 0, it
follows from (5) that m1 < m2 in this case. Thus each m1-ellipse lies outside
the m2-ellipse. (The careful reader will want to verify that the proof of the
Theorem remains valid when p < 0; while the family of curves |x|m+|y|m = 1
for m < 0 no longer consists of generic ellipses, it is still the case that no two
distinct such curves intersect.)

m1 = 2, p = −6, m2 = 3

Figure 7

m1 = 1, p = −6, m2 =
6

5

Figure 8
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It was the beauty of envelopes which first attracted them to the author’s
attention. Perhaps gone are the days when envelopes were created with pen
and straightedge. But the advent of computer graphics allows for the creation
of some truly striking images. It is hoped that the few included here might
inspire others to explore this sublime geometrical world.
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