Matsko

Grammars and Finite-State Automata

The mathematics of computer science (informatics) is a rich source of prob-
lems for competitions at many levels. The aim of this paper is to provide a
brief introduction to a few of these ideas.

Let’s begin with a problem.

Problem 1: Consider the following method for creating strings of 1’s. Begin
with the symbol z, and apply the following replacement rules as many times
as desired and in any order:

x— 111z (1)
z e 11111z (2)
111 (3)

The process ends when only ones remain. For example, we may obtain a
string of 16 ones using rules 2, 1, 2, and 3, in that order:

o 11111z = 111111112 > 1111111111111 &> 1111111111111111.

How many strings of one or more 1’s CANNOT be obtained by applying these
rules?

Clearly, only strings of ones may be formed. The set of rules which generates
these strings is called a grammar, while the set of all strings which may be
created using these rules is called the language produced by that grammar.

The symbol “x” is called a non-terminal symbol, since as long as there is
an x present anywhere in the string, we must continue applying rules until
only 1’s remain. Similarly, the symbol “1” is called a terminal symbol.

This informal definition of a grammar will suffice for this paper. Keep in
mind that in writing contest problems, it is desirable to keep the problem
statement as brief as possible. In addition, as the above problem shows, it

1 July 2010

Matsko

is possible to give the contestant an informal feel for what a grammar is
without including details of a formal definition.

How does one approach Problem 1?7 Of course one may begin by simply
writing out several strings in the language, looking for patterns. However,
rules (1) and (2) are suggestive of the postage stamp problem: given an
infinite supply of three- and five-cent stamps, what denominations of postage
are possible?

It is well known that the maximum number of ones which cannot be produced
by (1) and (2) only is (3—1)(5—1) —1 = 7, so that a quick inspection shows
that only strings of 1, 2, 4, or 7 ones cannot be obtained by using (1) and
(2). Since the process ends with an application of (3), strings of 4, 5, 7, or
10 ones cannot be obtained. Further, since we must end by using (3), the
strings 1 and 11 are also impossible to generate.

Thus, only strings of 1, 2, 4, 5, 7, or 10 ones cannot be produced by using
the above rules. Hence there are six such strings.

Of course it is not necessary to be familiar with the postage stamp problem
in order to be able to solve this problem. But hopefully the solution to this
problem serves as an illustration of the application of mathematical ideas to
the analysis of languages produced by grammars.

One beautiful aspect of working with grammars is that they are very easy to
write — simply jot down any set of rules which comes to mind, and explore
the grammar produced. This is the easy part! Sometimes, it is difficult
to determine whether the rules can produce any strings at all. By way of
example, consider the following two rules:

a+ lalal (1)
lla—1 (2)

As before, we begin with the non-terminal a and apply rules until only 1’s
remain. A first thought is that it is not possible to ever eliminate all the
non-terminal a’s — since any time you used rule (1), the second a produced
could never be removed because in order to do so, two 1’s would need to
precede it in order to use rule (2).

2 July 2010

Matsko

This turns out to be incorrect. A simple attempt at creating a string in the
language yields

a s lalal = 1lalallal & 11allal & 111al & 111.

Thus, in applying rule (1) more than once, the additional 1’s needed to use
rule (2) are thereby produced.

So now the problem becomes more interesting! In general, rules which allow
strings to shrink, such as rule (2), can allow for some very unusual behavior.
What language is produced by this grammar? The curious reader may think
for a few moments before continuing to the solution.

It should be clear that applying rule (1) increases the length of the string by
4, while applying rule (2) decreases the length of the string by 2. Since we
begin with a — a string of length 1 — any string produced by this grammar
must have odd length.

But we can never produce a single 1, since in order to do so, we would have
to obtain the string 11a immediately before. It is clear that after the initial
a, applying either of the rules results in a string ending in 1. Thus 11a can
never be produced, and thus neither can a string consisting of a single 1.

Can strings of all odd lengths greater than one be obtained? It turns out
that this is indeed possible. We use a standard proof technique here: derive
additional rules which may be used to give the desired result. In particular,
we will show that the following rules may be derived from the original two:

a 111al (3)
ars 11111al (4)

Certainly rule (3) is easy to see, since we have already derived in on our
way to producing 111 earlier. Rule (4) may be similarly derived by applying
rule (1) three times, and then using rule (2) three times. Note that a fourth
application of rule (2) produces the string 11111, and so suggests a pattern:
to produce a string of 2n — 1 ones (n > 1), apply rule (1) n times, followed
by rule (2) n + 1 times.

3 July 2010

Matsko

The reader is welcome to attempt an induction proof using this observation
— but it is not so easy to guarantee that when applying rule (2), there are
always two 1’s just preceding the occurrence of an a.

However, using rules (3) and (4) allow for a direct proof. For it is clear that
applying rule (3) p times (where p > 1) followed by rule (2) results in a
string of length 4p — 1. Moreover, applying rule (4) once, rule (3) ¢ times,
and finally rule (2) results in a string of length

6+4g—1=4q+5.

Note that ¢ may be 0 here, as we may use rule (2) immediately after rule
(4). Tt is clear that allowing p and ¢ to vary over their ranges will produce
strings of ones of all odd lengths greater than 1.

Now there is no reason that we are limited to either one terminal symbol or
one non-terminal symbol. The complexity of a problem can increase signifi-
cantly with multiple terminal and non-terminal symbols.

Problem 2: Consider the following method for creating strings of 0’s and
1’s. Begin with the symbol z, and apply the following replacement rules as
many times as desired and in any order.

z—1 (1) y—1lz (5)
x—=0x (2) z—0 (6)
z—=1ly 3) zw—0y (7)
y—0z (4) z—1lz (8)

The process ends when only 0’s and 1’s remain. For example,

x ¥ 1y v 102 2 1012 +> 1010.

Which of the following numbers, interpreted as a binary string, can be ob-
tained using the above rules?

(A) 52011 (B) 62011 (C) 72011 (D) 82011 (E) 92011

4 July 2010

Matsko

How does one approach a problem like this? The key lies in examining what
it means for a string to end in z, y, or z. The rules make sense if we interpret
a string ending in x to mean “the string created so far, interpreted as a
binary number, is congruent to 0 mod 3.” Similarly, that a string ends in y
means “the string created so far, interpreted as a binary number, is congruent
to 1 mod 3,” and that a string ends in z means “the string created so far,
interpreted as a binary number, is congruent to 2 mod 3.”

Each rule is consistent with this interpretation. For example, (5) indicates
that if the string so far ends in y (the string is congruent to 1 mod 3), adding
a 1 on the end multiplies the number by 2 and adds 1, leaving a string which
is congruent to 2- 141 =0 mod 3, so that it must now end in z.

Now notice that (3) and (7) leave the string ending in y, so that after applying
one of these rules, the string so far may be interpreted as a binary number
which is equivalent to 1 mod 3. Since (1) and (6) are similar to (3) and (7)
except for adding the trailing “y,” we see that when the last x, y, or z is
replaced by a 0 or a 1, a binary number congruent to 1 mod 3 remains.

With the same interpretation of the above rules, it is not difficult to see that
given a binary number congruent to 1 mod 3, a sequence of rules may be
found which produce this number. For example, we obtain 10011 as follows:

25 1y v 102 5 100y = 1001z — 10011.

It is not difficult to make the above arguments rigorous by using induction
on the length of the binary strings produced. Thus, the rules produce pre-
cisely those binary strings which, when interpreted as binary numbers, are
congruent to 1 mod 3. This immediately gives the correct answer to the
multiple-choice question.

This solution technique, while differing substantially from the first, is typical
in analyzing grammars. We may consider x, y and z as intermediate “states”
in the construction of our string, and interpret rule (2) as meaning “after
reading in a 0, we are in state x.” This leads to the construction of what is
called a finite-state machine for this grammar; however, given limitations
of space, this topic cannot be addressed in any depth. Also closely related is
a discussion of regular expressions, but again, the interested reader will
necessarily need to explore that topic on his or her own.

5 July 2010

Matsko

It should be clear that number theory is playing a rather prominent role
in our discussion so far. However, problems involving grammars allow for
non-traditional and novel applications of number theory — so that as far
as contest problems are concerned, something new may be added to the
repertoire. The following is an example of an open-ended problem requiring
a written solution. While not involving number theory in a deep way, the
problem is certainly more involved than the postage stamp problem we began
with.

Problem 3: Consider the following method for creating strings of 0’s and
1’s. Begin with the symbol x, and apply the following replacement rules as
many times as desired and in any order.

x> 1lz (1)
Ty (2)
y +— y000 (3)
111900 >y (4)
y s 10 (5)

For example,
x5 11z 2 11y 25 115000 > 1110000.

Describe all strings which can be produced using these rules.

Solution: Note that the strings accepted by this language consist of some
number of 1’s followed by some number of 0’s. Given that a string must end
with rule (5), there must be at least one of each symbol. We will show that
given m,n > 1, the string of m 1’s followed by n 0’s belongs to this language.

Let R; represent the number of times rule (¢) is applied. Then it is evident
that there are 2R, — 3R, + 1 1’s in the string followed by 3R3 — 2R4+ 1 0’s,
with the “4+1” terms coming from rule (5). Thus, given m and n, we must
simultaneoulsly solve

2R1—3R4+1:m, 3R3—2R4+1:n
This system may be solved in terms of Ry, giving

3Ry +m —1 2Ry +n—1
=———— R3=——.

Rl 9) 3

6 July 2010

Matsko

By choosing R, to be a positive integer simultaneously satisfying
Ry=(m—1)mod 2, Ry=(n—1)mod 3,

then R; and Rj are seen to be positive integers. But of course this is always
possible since 2 and 3 are relatively prime.

Note that since m,n > 1, we always have
3 2
R > -R Rs> =R
12 5l 3 = gl

so that there will always be enough 0’s or 1’s to apply Rule (4) as many times
as is necessary — presuming that we begin by applying rule (1) Ry times, then
apply rule (2), and then apply rule (3) R3 times.

Thus, the strings produced by these rules consist of those strings consisting
of one or more 1’s followed by one or more 0’s.

Now for our last problem.

Problem 4: Consider the following method for creating strings of 0’s and
1’s. Begin with the symbol a, and apply the following replacement rules as
many times as desired and in any order.

a— lal (1)
a— 1la (2)
a1 (3)
1lal — b0 (4)
b — b0 (5)
b000 — a (6)

The process ends when only 0’s and 1’s remain. For example, the string 11
may be obtained as follows:

ars 1al & 111al & 160 2 1600 5 16000 S 1a s 11.

Describe all binary strings obtained by these rules.

7 July 2010

Matsko

Solution: First, notice that it is not possible using these rules to produce a
string beginning with a 0. To be completely rigorous, this may be established
by a brief induction argument on the length of strings containing the symbols
a, b, 0, and 1.

It is, however, possible to produce any string beginning with a 1. First note
that it is possible to replace the symbol a with al as follows:

ars lal Vs 11all & 501 < b001 5 b0001 VS al.

It is also possible to replace the symbol a with a0, as follows:

a s 1la s 111al & 160 < 1600 & 16000 > 160000
B 100 2 11610 25 500 5 5000 > 50000 5 0.

Thus, we may repeatedly add either a 0 or 1 at the end of any string. A final
application of (3) finishes the process and adds a 1 to the beginning of the
string. Thus, any string beginning with a 1 can be produced. (Note that a
single 1 may be produced just by an application of (3).)

Certainly no number theory is involved here, but it is not at all obvious what
language is produced by this grammar just by glancing at the rules.

It is my hope that this brief introduction into grammars (and the related
subjects of finite-state machines and regular expressions) gives the reader a
feel for a class of interesting contest problems requiring a minimum of back-
ground knowledge. Moreover, while there are a few standard techniques for
solving such problems, it should be evident that a slight change in the rules
of a grammar might require entirely different solution methods. Finally, it
bears repeating that it is very easy to generate open-ended questions regard-
ing the language produced by a particular grammar. It is not so easy to
create interesting problems.

As a final remark, there is a very famous puzzle closely related to grammars
— the MU puzzle in Douglas Hofstadter’s Godel, Escher, Bach. Hofstadter
weaves a discussion of this problem throughout his book, which is an ex-
cellent introduction to mathematical thinking, number theory, and logic. It

8 July 2010

Matsko

bears witness to the simple elegance which may be associated with problems
involving the mathematics of computer science.

References.

Hofstaster, Douglas R., Godel, Escher, Bach: An FEternal Golden Braid,
Random House, 1980.

Hopcroft, Motwani, Ullman, Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, 2000.

Sipser, Michael, Introduction to the Theory of Computation, Wadsworth Pub-
lishing Co., 1997, 2005.

9 July 2010

