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Consider the following second-order recurrence relations:

Gn+2 = Gn+1 − Gn, n ≥ 0, G0 = G6 = 1, (1)

Gn+2 = Gn+1 − Gn, n ≥ 0, G0 = 1, G6 = 2, (2)

Gn+2 = 2Gn+1 − Gn, n ≥ 0, G0 = G6 = 1. (3)

These are not usual exercises in a discrete mathematics course—the initial conditions
are nonconsecutive. Solving second-order recurrences with nonconsecutive initial con-
ditions introduces a few surprises. For example, to solve (1), choose your favorite
number for G1 (such as 42), and write the resulting sequence:

1, 42, 41,−1,−42,−41, 1, 42, . . . .

This will force G6 = 1, and so (2) has no solution. But (3) does have a unique, if
pedestrian, solution: the constant sequence 1.

The main purpose of this paper is to decide when a recurrence with nonconsecu-
tive initial conditions has no solution, a unique solution, or infinitely many solutions.
Throughout, we assume recurrences are linear, second-order, and homogeneous with
constant, real coefficients and real initial conditions.

Preliminaries
Recall that the solution to the second-order linear recurrence relation given by

Gn+2 = rGn+1 + sGn, n ≥ 0, (4)

with λ1 and λ2 being roots of the characteristic equation λ2
− rλ− s = 0, is given by

Gn = c1λ
n
1 + c2λ

n
2 (5)
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when λ1 6= λ2, and

Gn = (c1 + c2n)λn
1 (6)

when λ1 = λ2. The constants c1 and c2 are determined by the initial conditions, that
is, values (usually) for G0 and G1. Note that λ1, λ2, c1, and c2 may be complex. (Of
course, the reals may be considered as a subset of the complex numbers, but we use the
term “complex” specifically to mean non-real.) It is easy to see from (4) that consecu-
tive initial conditions (not necessarily G0 and G1) uniquely determine G. (We consider
a sequence to be a function whose domain is the natural numbers, so that “G” refers
to this function, while “Gn” refers to a specific term in the sequence. As is usual, we
write “Gn” instead of “G(n).”)

We now consider the most general form of (4), where any two initial conditions
may be specified:

Gn+2 = rGn+1 + sGn, n ≥ 0, G p,Gq given, 0 ≤ p < q. (7)

To help motivate the main result, we consider two examples that possess features
characteristic of recurrences with nonconsecutive initial conditions.

Example 1. Consider the recurrence

Gn+2 = 4Gn, n ≥ 0, G0 = 1, G4 = 16.

Note that the roots of the characteristic equation λ2
− 4 = 0 are both real and are

negatives of each other. Also note that if G0 = 1, then G4 must be 16. Moreover, G1

is arbitrary; the sequence G has the form

1, G1, 4, 4G1, 16, 16G1, . . . .

Example 2. Consider the recurrence

Gn+2 = 2Gn+1 − 4Gn, n ≥ 0, G0 = 1, G6 = 64.

The characteristic equation λ2
− 2λ + 4 = 0 has complex conjugate roots 1 ±

√
3i .

The sequence G begins

1, G1, 2G1 − 4, −8, −8G1, −16G1 + 32, 64, . . . ,

so that G3 and G6 must be−8 and 64, respectively. With G1 = 0, we have the sequence

1, 0, −4, −8, 0, 32, 64, . . . ,

where powers of 2 seem to be lurking. In fact, the sequence 2−nGn is the periodic
sequence

1, 0, −1, −1, 0, 1, 1, 0, . . . .

Quasi-periodicity
We now make an assumption that will hold for the remainder of this paper: s 6= 0. If
s = 0, the recurrence is actually first-order and results in a geometric sequence. Of
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course, second-order recurrences may produce geometric sequences, but our discus-
sion will not be adversely affected as long as s 6= 0 in these cases.

Rather than state the result first, we provide motivation by attempting to solve (7).
We first look at solutions of the form (6), where λ1 = λ2. In this case, the initial con-
ditions produce the system

G p = (c1 + c2 p)λp
1 ,

Gq = (c1 + c2q)λq
1 .

The general solution to this system is given by

c1 =
qG pλ

q
1 − pGqλ

p
1

(q − p)λp+q
1

, c2 =
G pλ

q
1 − Gqλ

p
1

(p − q)λp+q
1

, (8)

so we may uniquely solve for c1 and c2 for any two given initial values. Thus, we see
that no subtleties arise when the characteristic equation has a repeated root.

Now assume that λ1 6= λ2, so that (5) applies. The initial conditions require solving
the system

G p = c1λ
p
1 + c2λ

p
2 , (9)

Gq = c1λ
q
1 + c2λ

q
2 . (10)

The general solution to this system is given by

c1 =
Gqλ

p
2 − G pλ

q
2

λ
q
1λ

p
2 − λ

p
1λ

q
2

, c2 =
G pλ

q
1 − Gqλ

p
1

λ
q
1λ

p
2 − λ

p
1λ

q
2

. (11)

This presents no difficulty as long as

λ
q
1λ

p
2 − λ

p
1λ

q
2 6= 0.

When λq
1λ

p
2 − λ

p
1λ

q
2 = 0 and λ2 6= 0 (which follows from the assumption s 6= 0),

this is equivalent to (
λ1

λ2

)q−p

= 1.

Note that this implies

Gq = c1λ
q
1 + c2λ

q
2

= c1λ
p
1λ

q−p
1 + c2λ

p
2λ

q−p
2

= c1λ
p
1λ

q−p
1 + c2λ

p
2λ

q−p
1

= λ
q−p
1 (c1λ

p
1 + c2λ

p
2 )

= λ
q−p
1 G p. (12)

Of course, p and q may be far apart, so we introduce the following definition,
reminiscent of the usual definition for periodicity.
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Definition. When λ1 6= λ2, the sequence G is said to be quasi-periodic if there is an
integer Q > 0 such that (

λ1

λ2

)Q

= 1 and

(
λ1

λ2

)M

6= 1

for 0 < M < Q. This integer Q is called the quasi-period of G.

Recall the assumption that λ1 6= λ2. While it is possible to define quasi-periodicity
so that the case λ1 = λ2 is included, this would unnecessarily complicate statements
of other results. Since there is always a unique solution to (7) when λ1 = λ2, distin-
guishing quasi-periodicity in this case offers no additional insight into the nature of
the solutions. Moreover, the only type of sequence in the case λ1 = λ2 which could
be called quasi-periodic would be geometric (including constant) sequences, and these
are also generated when λ1 6= λ2.

Now suppose that G is a quasi-periodic sequence with quasi-period Q. Since λ1

and λ2 are solutions to a quadratic equation with real coefficients, then either λ1 and
λ2 are both real, or else we must have λ2 = λ1 (where λ̄ is the complex conjugate of
λ).

We examine the real case first. Since G is quasi-periodic, we have λ1 6= λ2, and
hence it must be the case that λ2 = −λ1. Thus λ1/λ2 = −1, and therefore Q = 2.
Without loss of generality, assume that % = λ1 > 0, so we may write

Gn = %
n(c1 + (−1)nc2). (13)

Example 1 illustrates this case. Note that because λ2 = −λ1, we must have r = 0
(where r is as in (4)). Thus, Example 1 is essentially the only type of quasi-periodic
sequence whose characteristic equation has real roots.

Proceeding to the complex case, put % = |λ1| and find θ so that

λ1 = %eiθ , λ2 = %e−iθ .

In Example 2, we have % = 2 and θ = π/3. (Note: Here and in the remainder of the
paper, we choose θ to be the smallest positive angle satisfying a given condition.) Then(

λ1

λ2

)Q

=

(
eiθ

e−iθ

)Q

= e2i Qθ
= cos(2Qθ)+ i sin(2Qθ) = 1.

Note that Q = 3 in Example 2.
Because cos(2Qθ) = 1 and sin(2Qθ) = 0, it must be that 2Qθ is some positive

integer multiple k of 2π , and hence

θ =
kπ

Q
. (14)

Therefore we may write G as follows, remembering that c2 = c1 and using the notation
<z for the real part of the complex number z:

Gn = c1λ
n
1 + c2λ

n
2 = c1λ

n
1 + c̄1(λ1)n

= 2<(c1λ
n
1) = 2<

(
c1%

neinθ
)

= 2%n
<
(
c1einθ

)
. (15)

From this representation, we have the following result, justifying the term “quasi-
periodic” for describing G.
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Lemma. Suppose that G is quasi-periodic with quasi-period Q. Then with % = |λ1|

and k as given in (14), the sequence

Hn = %
−nGn

is periodic with period Q if either λ1 and λ2 are real or k is even, and period 2Q if k
is odd.

Proof. Note that in the real case, the result follows immediately from (13). For the
complex case, the result follows directly from (15), along with the observation that

ei(n+Q)θ
= einθei Qθ

= einθeikπ ,

which follows from the definition of θ (14). The minimality of Q in the definition of
quasi-periodicity implies that H cannot have a period smaller than Q (or 2Q if k is
odd).

Main result
Now that we have articulated the feature (namely, quasi-periodicity) of recurrence
relations with nonconsecutive initial conditions, which may be problematic in their
solution, we are able to state the main result.

Theorem. Consider the recurrence relation

Gn+2 = rGn+1 + sGn, n ≥ 0, G p,Gq given, 0 ≤ p < q,

where s 6= 0, and λ1, λ2 are the roots of the characteristic equation λ2
− rλ− s = 0.

Then we have:

1. There is no solution if G is quasi-periodic with quasi-period Q, q − p is a mul-
tiple of Q, and

Gq 6= λ
q−p
1 G p;

2. There is exactly one solution if G is not quasi-periodic, or if G is quasi-periodic
with quasi-period Q, and q − p is not a multiple of Q;

3. There are infinitely many solutions if G is quasi-periodic with quasi-period Q,
q − p is a multiple of Q, and Gq = λ

q−p
1 G p.

Proof. First, suppose that G is not quasi-periodic. If λ1 = λ2, we see from (8) that c1

and c2 are uniquely determined, while if λ1 6= λ2, we see from (11) that c1 and c2 are
uniquely determined.

Now suppose that G is quasi-periodic with quasi-period Q. The case when λ1 and
λ2 are real follows easily from considering Example 1 and (13). We are left with the
case when the roots are complex.

Assume first that q − p is a multiple of Q. Then(
λ1

λ2

)q−p

=

(
λ1

λ2

)Q

= 1,

so that, from (12), we must have

Gq = λ
q−p
1 G p.
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Thus, if the initial conditions do not satisfy this equation, there is no solution to the
recurrence. But if the initial conditions do satisfy this equation, the system (9, 10) is
dependent. In this case, (10) is obtained by multiplying (9) by λq−p

1 . Thus, specifying
a value for, say, G p+1 will determine the sequence (see (1) for an example).

If q − p is not a multiple of Q, then the denominators in (11) are not 0, so that c1

and c2 may be uniquely determined.

Quasi-periodic integer sequences
As an application of these ideas, we ask the following question: When is the solution to
a second-order recurrence a quasi-periodic integer sequence? Several interesting ideas
arise in considering an answer to this question.

It may seem intuitive that if G is a sequence of integers, then both r and s must be
integers—but the question is more subtle. The solution to the recurrence

Gn+2 =
5

2
Gn+1 − Gn, G0 = 1, G1 = 2,

is given by Gn = 2n . However, it may be shown that if the solution to a second-order
recurrence is not a geometric sequence, then r and s must be integers when G is an
integer sequence. The proof relies on Fatou’s Lemma, and is included in the appendix
for completeness.

So assume that G is a quasi-periodic integer sequence. It should be clear from the
preceding remarks that if r = 0 and s is an integer greater than 0, then a quasi-periodic
sequence is obtained as long as the initial data are suitable. This exhausts the case
when λ1 and λ2 are real.

When λ1 and λ2 are complex, we note that

r = λ1 + λ2 = 2% cos θ,

where % and θ are defined as before. But we know that %2
= λ1λ1 = −s, so that

cos2θ =
r 2

4%2
= −

r 2

4s
.

It is well known that if θ is a rational multiple of π (see (14)) and cos2θ is rational, then

cos2θ ∈

{
0,

1

4
,

1

2
,

3

4
, 1

}
.

(A proof of this fact is given in [1].) This is sufficient to determine s in terms of r and
cos2θ , so that all possibilities may be found.

For completeness, we enumerate all quasi-periodic and periodic integer sequences
generated by second-order recurrences. Periodic sequences are found by requiring % =
1, so that G = H (where H is as described in the theorem), and hence G is periodic.
Note that the case cos2θ = 1 is not addressed, as this implies that λ1 = λ2; this issue
was discussed earlier. We also assume that initial conditions G0 and G1 are given, and
that G0 and G1 are not both 0, as this generates the constant sequence 0 in all cases.
There are just four types:

Gn+2 = sGn, (16)

Gn+2 = rGn+1 − r 2Gn, (17)
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Gn+2 = rGn+1 −
r 2

2
Gn, r even, (18)

Gn+2 = rGn+1 −
r 2

3
Gn, r divisible by 3. (19)

• Regarding (16), the recurrence Gn+2 = sGn is quasi-periodic for any integer s.
When s > 0, then λ1 and λ2 are real, and G has quasi-period 2. Note that G is geo-
metric if sG2

0 = G2
1. When s = 1, then G is periodic with period 2 unless G0 = G1,

in which case G is constant. When periodic, G has the form

G0,G1,G0, . . . .

When s < 0, then λ1 and λ2 are complex conjugates, which corresponds to the
case cos2θ = 0 and G has quasi-period 4. When s = −1, then G is periodic with
period 4 and has the form

G0,G1,−G0,−G1,G0, . . . .

• The sequence given in (17) corresponds to the case cos2θ = 1/4. Here, we have
s = −r 2. When r > 0, we have cos θ = 1/2 and hence θ = π/3. Then G has quasi-
period 6. When r = 1, we see that G is periodic with period 6 and has the form

G0,G1,G1 − G0,−G0,−G1,G0 − G1,G0, . . . .

When r < 0, then cos θ = −1/2 and θ = 2π/3. In this case, G has quasi-period
3. When r = −1, then G is periodic with period 3 and has the form

G0,G1,−G0 − G1,G0, . . . .

• The case cos2θ = 1/2 gives (18), so that θ = π/4 or θ = 3π/4. In this case, s =
−r 2/2, and G has quasi-period 8. Here, % cannot be 1.

• Finally, (19) corresponds to the case cos2θ = 3/4, and hence we have θ = π/6 or
θ = 5π/6. In this case, s = −r 2/3 and G has quasi-period 12. Also here, % cannot
be 1.

Concluding remarks
We have seen that second-order recurrences with nonconsecutive initial conditions
provide an interesting, yet accessible alternative to the usual problems offered in a dis-
crete mathematics course. We hope that these results will inspire others. It particular,
an interesting REU project might be to explore higher-order cases, both in deciding the
nature of the solutions to higher-order recurrences, as well as finding all quasi-periodic
and periodic integer sequences produced by such recurrences.

Appendix
Here, we wish to establish that if a second-order recurrence is given by (4) that is not a
geometric sequence, and if G is a sequence of integers, then r and s must be integers.

This may be shown using Fatou’s Lemma (see [2], 605, 629), stated below as it
applies to our discussion.
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Lemma (Fatou). Suppose that

g(x) =
∞∑

n=0

Gn xn,

with integer coefficients Gn , may be written as a rational function P̃(x)/Q̃(x), where
P̃(x), Q̃(x) ∈ Q[x]. Then we can write g(x) = P(x)/Q(x), where P and Q are rela-
tively prime polynomials with integer coefficients such that Q(0) = 1.

We apply Fatou’s Lemma by first finding the generating function for G using the
usual techniques. (For the purposes of the proof, it is not necessary to determine the
interval of convergence.)

Proceeding, we have

g(x) =
∞∑

n=0

Gn xn

= G0 + G1x +
∞∑

n=2

Gn xn

= G0 + G1x +
∞∑

n=2

(rGn−1 + sGn−2)x
n

= G0 + G1x + r x
∞∑

n=2

Gn−1xn−1
+ sx2

∞∑
n=2

Gn−2xn−2

= G0 + G1x + r x
∞∑

n=1

Gn xn
+ sx2

∞∑
n=0

Gn xn

= G0 + G1x + r x(g(x)− G0)+ sx2g(x).

Solving for g(x) gives

g(x) =
G0 + x(G1 − rG0)

1− r x − sx2
.

Now put P̃(x) = G0 + x(G1 − rG0) and Q̃(x) = 1− r x − sx2. Hence, P̃(x) and
Q̃(x) must be relatively prime, or else P̃(x) is a factor of Q̃(x), so that g(x) is the
generating function for a geometric series, contradicting our assumption that G is not
geometric. Then

P(x)

Q(x)
=

P̃(x)

Q̃(x)
,

or equivalently, P(x)Q̃(x) = P̃(x)Q(x). Since P(x) and Q(x) are relatively prime
by Fatou’s Lemma, we must have that Q(x) divides Q̃(x), and since P̃(x) and Q̃(x)
are relatively prime, we must have that Q̃(x) divides Q(x). Thus, Q(x) is a rational
multiple of Q̃(x).

Since both Q(0) = 1 (by Fatou’s Lemma) and Q̃(0) = 1, we must therefore have
that Q(x) = Q̃(x). Since we know from Fatou’s Lemma that Q(x) must have integer
coefficients, we see that r and s must be integers.
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Summary. When consecutive initial conditions for second-order linear homogeneous recur-
rence relations with constant coefficients are given, the resulting sequence is uniquely de-
termined. However, if the initial conditions are not consecutive, it may be the case that no
sequence is possible, or that infinitely many sequences satisfy the recurrence.
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Proof Without Words: Ensphering Three Capped Prisms

David Seppala-Holtzman (dholtzman@sjcny.edu), St. Joseph’s College,
Brooklyn NY

1

1

1

1 1

1

Summary. For n = 3, 4, or 5, a unit sphere is the smallest sphere that encloses a right
prism with square sides on a regular n-gon capped by a regular pyramid with all sides
of unit length. The points of incidence are the apex of the pyramid and the opposite n
vertices of the prism.
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